Loading…

On limiting behavior of stationary measures for stochastic evolution systems with small noise intensity

The limiting behavior of stochastic evolution processes with small noise intensity ϵ is investigated in distribution-based approaches. Let μ ϵ be a stationary measure for stochastic process X ϵ with small ϵ and X 0 be a semiflow on a Polish space. Assume that { μ ϵ : 0 < ϵ ⩽ ϵ 0 } is tight. Then...

Full description

Saved in:
Bibliographic Details
Published in:Science China. Mathematics 2020-08, Vol.63 (8), p.1463-1504
Main Authors: Chen, Lifeng, Dong, Zhao, Jiang, Jifa, Zhai, Jianliang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-bafde15b6b9fbf5b145d3ca3fabeb4d3adbaa0be973b52a59be358be65f456db3
cites cdi_FETCH-LOGICAL-c316t-bafde15b6b9fbf5b145d3ca3fabeb4d3adbaa0be973b52a59be358be65f456db3
container_end_page 1504
container_issue 8
container_start_page 1463
container_title Science China. Mathematics
container_volume 63
creator Chen, Lifeng
Dong, Zhao
Jiang, Jifa
Zhai, Jianliang
description The limiting behavior of stochastic evolution processes with small noise intensity ϵ is investigated in distribution-based approaches. Let μ ϵ be a stationary measure for stochastic process X ϵ with small ϵ and X 0 be a semiflow on a Polish space. Assume that { μ ϵ : 0 < ϵ ⩽ ϵ 0 } is tight. Then all their limits in the weak sense are X 0 -invariant and their supports are contained in the Birkhoff center of X 0 . Applications are made to various stochastic evolution systems, including stochastic ordinary differential equations, stochastic partial differential equations, and stochastic functional differential equations driven by Brownian motion or Lévy processes.
doi_str_mv 10.1007/s11425-018-9527-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2425623116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425623116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-bafde15b6b9fbf5b145d3ca3fabeb4d3adbaa0be973b52a59be358be65f456db3</originalsourceid><addsrcrecordid>eNp1kE1rwzAMhs3YYGXrD9jNsHM2f8ROchxlX1DoZTsbO7FblyTuLKej_34uGew0HSSB3ldCD0J3lDxQQqpHoLRkoiC0LhrBqoJeoAWtZVPkxC5zL6uyqFjNr9ESYE9y8IaUFV-g7WbEvR988uMWG7vTRx8iDg5D0smHUccTHqyGKVrALo8ghXanIfkW22Pop7MIwwmSHQB_-7TDMOi-x2PwYLEfkx3Bp9MtunK6B7v8rTfo8-X5Y_VWrDev76unddFyKlNhtOssFUaaxhknDC1Fx1vNnTbWlB3XndGaGNtU3AimRWMsF7WxUrhSyM7wG3Q_7z3E8DVZSGofpjjmk4plRpJxSmVW0VnVxgAQrVOH6If8q6JEnZGqGanKSNUZqaLZw2YPZO24tfFv8_-mH5GTfSU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425623116</pqid></control><display><type>article</type><title>On limiting behavior of stationary measures for stochastic evolution systems with small noise intensity</title><source>Springer Link</source><creator>Chen, Lifeng ; Dong, Zhao ; Jiang, Jifa ; Zhai, Jianliang</creator><creatorcontrib>Chen, Lifeng ; Dong, Zhao ; Jiang, Jifa ; Zhai, Jianliang</creatorcontrib><description>The limiting behavior of stochastic evolution processes with small noise intensity ϵ is investigated in distribution-based approaches. Let μ ϵ be a stationary measure for stochastic process X ϵ with small ϵ and X 0 be a semiflow on a Polish space. Assume that { μ ϵ : 0 &lt; ϵ ⩽ ϵ 0 } is tight. Then all their limits in the weak sense are X 0 -invariant and their supports are contained in the Birkhoff center of X 0 . Applications are made to various stochastic evolution systems, including stochastic ordinary differential equations, stochastic partial differential equations, and stochastic functional differential equations driven by Brownian motion or Lévy processes.</description><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-018-9527-1</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Applications of Mathematics ; Brownian motion ; Constraining ; Evolution ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Noise intensity ; Ordinary differential equations ; Partial differential equations ; Stochastic processes</subject><ispartof>Science China. Mathematics, 2020-08, Vol.63 (8), p.1463-1504</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-bafde15b6b9fbf5b145d3ca3fabeb4d3adbaa0be973b52a59be358be65f456db3</citedby><cites>FETCH-LOGICAL-c316t-bafde15b6b9fbf5b145d3ca3fabeb4d3adbaa0be973b52a59be358be65f456db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Lifeng</creatorcontrib><creatorcontrib>Dong, Zhao</creatorcontrib><creatorcontrib>Jiang, Jifa</creatorcontrib><creatorcontrib>Zhai, Jianliang</creatorcontrib><title>On limiting behavior of stationary measures for stochastic evolution systems with small noise intensity</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><description>The limiting behavior of stochastic evolution processes with small noise intensity ϵ is investigated in distribution-based approaches. Let μ ϵ be a stationary measure for stochastic process X ϵ with small ϵ and X 0 be a semiflow on a Polish space. Assume that { μ ϵ : 0 &lt; ϵ ⩽ ϵ 0 } is tight. Then all their limits in the weak sense are X 0 -invariant and their supports are contained in the Birkhoff center of X 0 . Applications are made to various stochastic evolution systems, including stochastic ordinary differential equations, stochastic partial differential equations, and stochastic functional differential equations driven by Brownian motion or Lévy processes.</description><subject>Applications of Mathematics</subject><subject>Brownian motion</subject><subject>Constraining</subject><subject>Evolution</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Noise intensity</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Stochastic processes</subject><issn>1674-7283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1rwzAMhs3YYGXrD9jNsHM2f8ROchxlX1DoZTsbO7FblyTuLKej_34uGew0HSSB3ldCD0J3lDxQQqpHoLRkoiC0LhrBqoJeoAWtZVPkxC5zL6uyqFjNr9ESYE9y8IaUFV-g7WbEvR988uMWG7vTRx8iDg5D0smHUccTHqyGKVrALo8ghXanIfkW22Pop7MIwwmSHQB_-7TDMOi-x2PwYLEfkx3Bp9MtunK6B7v8rTfo8-X5Y_VWrDev76unddFyKlNhtOssFUaaxhknDC1Fx1vNnTbWlB3XndGaGNtU3AimRWMsF7WxUrhSyM7wG3Q_7z3E8DVZSGofpjjmk4plRpJxSmVW0VnVxgAQrVOH6If8q6JEnZGqGanKSNUZqaLZw2YPZO24tfFv8_-mH5GTfSU</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Chen, Lifeng</creator><creator>Dong, Zhao</creator><creator>Jiang, Jifa</creator><creator>Zhai, Jianliang</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200801</creationdate><title>On limiting behavior of stationary measures for stochastic evolution systems with small noise intensity</title><author>Chen, Lifeng ; Dong, Zhao ; Jiang, Jifa ; Zhai, Jianliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-bafde15b6b9fbf5b145d3ca3fabeb4d3adbaa0be973b52a59be358be65f456db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Brownian motion</topic><topic>Constraining</topic><topic>Evolution</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Noise intensity</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lifeng</creatorcontrib><creatorcontrib>Dong, Zhao</creatorcontrib><creatorcontrib>Jiang, Jifa</creatorcontrib><creatorcontrib>Zhai, Jianliang</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lifeng</au><au>Dong, Zhao</au><au>Jiang, Jifa</au><au>Zhai, Jianliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On limiting behavior of stationary measures for stochastic evolution systems with small noise intensity</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>63</volume><issue>8</issue><spage>1463</spage><epage>1504</epage><pages>1463-1504</pages><issn>1674-7283</issn><eissn>1869-1862</eissn><abstract>The limiting behavior of stochastic evolution processes with small noise intensity ϵ is investigated in distribution-based approaches. Let μ ϵ be a stationary measure for stochastic process X ϵ with small ϵ and X 0 be a semiflow on a Polish space. Assume that { μ ϵ : 0 &lt; ϵ ⩽ ϵ 0 } is tight. Then all their limits in the weak sense are X 0 -invariant and their supports are contained in the Birkhoff center of X 0 . Applications are made to various stochastic evolution systems, including stochastic ordinary differential equations, stochastic partial differential equations, and stochastic functional differential equations driven by Brownian motion or Lévy processes.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11425-018-9527-1</doi><tpages>42</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7283
ispartof Science China. Mathematics, 2020-08, Vol.63 (8), p.1463-1504
issn 1674-7283
1869-1862
language eng
recordid cdi_proquest_journals_2425623116
source Springer Link
subjects Applications of Mathematics
Brownian motion
Constraining
Evolution
Mathematical analysis
Mathematics
Mathematics and Statistics
Noise intensity
Ordinary differential equations
Partial differential equations
Stochastic processes
title On limiting behavior of stationary measures for stochastic evolution systems with small noise intensity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A27%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20limiting%20behavior%20of%20stationary%20measures%20for%20stochastic%20evolution%20systems%20with%20small%20noise%20intensity&rft.jtitle=Science%20China.%20Mathematics&rft.au=Chen,%20Lifeng&rft.date=2020-08-01&rft.volume=63&rft.issue=8&rft.spage=1463&rft.epage=1504&rft.pages=1463-1504&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-018-9527-1&rft_dat=%3Cproquest_cross%3E2425623116%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-bafde15b6b9fbf5b145d3ca3fabeb4d3adbaa0be973b52a59be358be65f456db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2425623116&rft_id=info:pmid/&rfr_iscdi=true