Loading…

Test Cell for Membrane Electrode Assembly of the Vanadium Redox Flow Battery

The vanadium redox flow battery (VRFB) is the most promising type of rechargeable power sources for medium- and large-scale energy storage devices for modern power systems. The intensive research and development activity of leading world centers aimed at optimizing the key element of the VRFB—the me...

Full description

Saved in:
Bibliographic Details
Published in:Doklady. Physical chemistry (1991) 2020-03, Vol.491 (1), p.19-23
Main Authors: Petrov, M. M., Pichugov, R. D., Loktionov, P. A., Antipov, A. E., Usenko, A. A., Konev, D. V., Vorotyntsev, M. A., Mintsev, V. B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-e7cabd846af38642468e1355fd8668da6f478687067ce26f8f9aa85dded6c6923
cites cdi_FETCH-LOGICAL-c316t-e7cabd846af38642468e1355fd8668da6f478687067ce26f8f9aa85dded6c6923
container_end_page 23
container_issue 1
container_start_page 19
container_title Doklady. Physical chemistry (1991)
container_volume 491
creator Petrov, M. M.
Pichugov, R. D.
Loktionov, P. A.
Antipov, A. E.
Usenko, A. A.
Konev, D. V.
Vorotyntsev, M. A.
Mintsev, V. B.
description The vanadium redox flow battery (VRFB) is the most promising type of rechargeable power sources for medium- and large-scale energy storage devices for modern power systems. The intensive research and development activity of leading world centers aimed at optimizing the key element of the VRFB—the membrane electrode assembly (MEA)—necessarily includes testing new electrode materials, catalytic layers, electrolytes, and membranes, as well as their combination in the test cell. Here, an original design of an MEA test cell is proposed that significantly simplifies the assemblage procedure and makes it possible to increase the flow field variability by replacing massive graphite or graphite/polymer plates with sheets of extruded thermally expanded graphite. The current–voltage and power density characteristics have been measured and charge–discharge cycle tests of the MEA operation have been performed for an acidified vanadium electrolyte. The peak power density, charge–discharge cycle energy efficiency, and capacity utilization are comparable with those reported by leading research teams.
doi_str_mv 10.1134/S0012501620030021
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2425623871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425623871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e7cabd846af38642468e1355fd8668da6f478687067ce26f8f9aa85dded6c6923</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wFvA82om2Z3NHmtpq7AiaPW6pJuJtmw3Ndmi_fduqeBBPA3M-94b5jF2CeIaQKU3z0KAzASgFEIJIeGIDQCFThRIOGaDvZzs9VN2FuNKCFHkqhiwck6x42NqGu584A-0XgTTEp80VHfBW-KjGPtls-Pe8e6d-KtpjV1u1_yJrP_i08Z_8lvTdRR25-zEmSbSxc8cspfpZD6-S8rH2f14VCa1AuwSymuzsDpF45TGVKaoCVSWOasRtTXo0lyjzgXmNUl02hXG6MxaslhjIdWQXR1yN8F_bPsHqpXfhrY_WclUZiiVzqGn4EDVwccYyFWbsFybsKtAVPvSqj-l9R558MSebd8o_Cb_b_oGPy9sUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425623871</pqid></control><display><type>article</type><title>Test Cell for Membrane Electrode Assembly of the Vanadium Redox Flow Battery</title><source>Springer Nature</source><creator>Petrov, M. M. ; Pichugov, R. D. ; Loktionov, P. A. ; Antipov, A. E. ; Usenko, A. A. ; Konev, D. V. ; Vorotyntsev, M. A. ; Mintsev, V. B.</creator><creatorcontrib>Petrov, M. M. ; Pichugov, R. D. ; Loktionov, P. A. ; Antipov, A. E. ; Usenko, A. A. ; Konev, D. V. ; Vorotyntsev, M. A. ; Mintsev, V. B.</creatorcontrib><description>The vanadium redox flow battery (VRFB) is the most promising type of rechargeable power sources for medium- and large-scale energy storage devices for modern power systems. The intensive research and development activity of leading world centers aimed at optimizing the key element of the VRFB—the membrane electrode assembly (MEA)—necessarily includes testing new electrode materials, catalytic layers, electrolytes, and membranes, as well as their combination in the test cell. Here, an original design of an MEA test cell is proposed that significantly simplifies the assemblage procedure and makes it possible to increase the flow field variability by replacing massive graphite or graphite/polymer plates with sheets of extruded thermally expanded graphite. The current–voltage and power density characteristics have been measured and charge–discharge cycle tests of the MEA operation have been performed for an acidified vanadium electrolyte. The peak power density, charge–discharge cycle energy efficiency, and capacity utilization are comparable with those reported by leading research teams.</description><identifier>ISSN: 0012-5016</identifier><identifier>EISSN: 1608-3121</identifier><identifier>DOI: 10.1134/S0012501620030021</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Acidification ; Assembly ; Charge density ; Charge efficiency ; Chemistry ; Chemistry and Materials Science ; Discharge ; Electrode materials ; Electrodes ; Electrolytes ; Energy storage ; Extrusion ; Flux density ; Graphite ; Membranes ; Physical Chemistry ; Power management ; Power sources ; R&amp;D ; Rechargeable batteries ; Research &amp; development ; Vanadium</subject><ispartof>Doklady. Physical chemistry (1991), 2020-03, Vol.491 (1), p.19-23</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e7cabd846af38642468e1355fd8668da6f478687067ce26f8f9aa85dded6c6923</citedby><cites>FETCH-LOGICAL-c316t-e7cabd846af38642468e1355fd8668da6f478687067ce26f8f9aa85dded6c6923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Petrov, M. M.</creatorcontrib><creatorcontrib>Pichugov, R. D.</creatorcontrib><creatorcontrib>Loktionov, P. A.</creatorcontrib><creatorcontrib>Antipov, A. E.</creatorcontrib><creatorcontrib>Usenko, A. A.</creatorcontrib><creatorcontrib>Konev, D. V.</creatorcontrib><creatorcontrib>Vorotyntsev, M. A.</creatorcontrib><creatorcontrib>Mintsev, V. B.</creatorcontrib><title>Test Cell for Membrane Electrode Assembly of the Vanadium Redox Flow Battery</title><title>Doklady. Physical chemistry (1991)</title><addtitle>Dokl Phys Chem</addtitle><description>The vanadium redox flow battery (VRFB) is the most promising type of rechargeable power sources for medium- and large-scale energy storage devices for modern power systems. The intensive research and development activity of leading world centers aimed at optimizing the key element of the VRFB—the membrane electrode assembly (MEA)—necessarily includes testing new electrode materials, catalytic layers, electrolytes, and membranes, as well as their combination in the test cell. Here, an original design of an MEA test cell is proposed that significantly simplifies the assemblage procedure and makes it possible to increase the flow field variability by replacing massive graphite or graphite/polymer plates with sheets of extruded thermally expanded graphite. The current–voltage and power density characteristics have been measured and charge–discharge cycle tests of the MEA operation have been performed for an acidified vanadium electrolyte. The peak power density, charge–discharge cycle energy efficiency, and capacity utilization are comparable with those reported by leading research teams.</description><subject>Acidification</subject><subject>Assembly</subject><subject>Charge density</subject><subject>Charge efficiency</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Discharge</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Extrusion</subject><subject>Flux density</subject><subject>Graphite</subject><subject>Membranes</subject><subject>Physical Chemistry</subject><subject>Power management</subject><subject>Power sources</subject><subject>R&amp;D</subject><subject>Rechargeable batteries</subject><subject>Research &amp; development</subject><subject>Vanadium</subject><issn>0012-5016</issn><issn>1608-3121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKs_wFvA82om2Z3NHmtpq7AiaPW6pJuJtmw3Ndmi_fduqeBBPA3M-94b5jF2CeIaQKU3z0KAzASgFEIJIeGIDQCFThRIOGaDvZzs9VN2FuNKCFHkqhiwck6x42NqGu584A-0XgTTEp80VHfBW-KjGPtls-Pe8e6d-KtpjV1u1_yJrP_i08Z_8lvTdRR25-zEmSbSxc8cspfpZD6-S8rH2f14VCa1AuwSymuzsDpF45TGVKaoCVSWOasRtTXo0lyjzgXmNUl02hXG6MxaslhjIdWQXR1yN8F_bPsHqpXfhrY_WclUZiiVzqGn4EDVwccYyFWbsFybsKtAVPvSqj-l9R558MSebd8o_Cb_b_oGPy9sUA</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Petrov, M. M.</creator><creator>Pichugov, R. D.</creator><creator>Loktionov, P. A.</creator><creator>Antipov, A. E.</creator><creator>Usenko, A. A.</creator><creator>Konev, D. V.</creator><creator>Vorotyntsev, M. A.</creator><creator>Mintsev, V. B.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200301</creationdate><title>Test Cell for Membrane Electrode Assembly of the Vanadium Redox Flow Battery</title><author>Petrov, M. M. ; Pichugov, R. D. ; Loktionov, P. A. ; Antipov, A. E. ; Usenko, A. A. ; Konev, D. V. ; Vorotyntsev, M. A. ; Mintsev, V. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e7cabd846af38642468e1355fd8668da6f478687067ce26f8f9aa85dded6c6923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acidification</topic><topic>Assembly</topic><topic>Charge density</topic><topic>Charge efficiency</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Discharge</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Extrusion</topic><topic>Flux density</topic><topic>Graphite</topic><topic>Membranes</topic><topic>Physical Chemistry</topic><topic>Power management</topic><topic>Power sources</topic><topic>R&amp;D</topic><topic>Rechargeable batteries</topic><topic>Research &amp; development</topic><topic>Vanadium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petrov, M. M.</creatorcontrib><creatorcontrib>Pichugov, R. D.</creatorcontrib><creatorcontrib>Loktionov, P. A.</creatorcontrib><creatorcontrib>Antipov, A. E.</creatorcontrib><creatorcontrib>Usenko, A. A.</creatorcontrib><creatorcontrib>Konev, D. V.</creatorcontrib><creatorcontrib>Vorotyntsev, M. A.</creatorcontrib><creatorcontrib>Mintsev, V. B.</creatorcontrib><collection>CrossRef</collection><jtitle>Doklady. Physical chemistry (1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrov, M. M.</au><au>Pichugov, R. D.</au><au>Loktionov, P. A.</au><au>Antipov, A. E.</au><au>Usenko, A. A.</au><au>Konev, D. V.</au><au>Vorotyntsev, M. A.</au><au>Mintsev, V. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Test Cell for Membrane Electrode Assembly of the Vanadium Redox Flow Battery</atitle><jtitle>Doklady. Physical chemistry (1991)</jtitle><stitle>Dokl Phys Chem</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>491</volume><issue>1</issue><spage>19</spage><epage>23</epage><pages>19-23</pages><issn>0012-5016</issn><eissn>1608-3121</eissn><abstract>The vanadium redox flow battery (VRFB) is the most promising type of rechargeable power sources for medium- and large-scale energy storage devices for modern power systems. The intensive research and development activity of leading world centers aimed at optimizing the key element of the VRFB—the membrane electrode assembly (MEA)—necessarily includes testing new electrode materials, catalytic layers, electrolytes, and membranes, as well as their combination in the test cell. Here, an original design of an MEA test cell is proposed that significantly simplifies the assemblage procedure and makes it possible to increase the flow field variability by replacing massive graphite or graphite/polymer plates with sheets of extruded thermally expanded graphite. The current–voltage and power density characteristics have been measured and charge–discharge cycle tests of the MEA operation have been performed for an acidified vanadium electrolyte. The peak power density, charge–discharge cycle energy efficiency, and capacity utilization are comparable with those reported by leading research teams.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0012501620030021</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-5016
ispartof Doklady. Physical chemistry (1991), 2020-03, Vol.491 (1), p.19-23
issn 0012-5016
1608-3121
language eng
recordid cdi_proquest_journals_2425623871
source Springer Nature
subjects Acidification
Assembly
Charge density
Charge efficiency
Chemistry
Chemistry and Materials Science
Discharge
Electrode materials
Electrodes
Electrolytes
Energy storage
Extrusion
Flux density
Graphite
Membranes
Physical Chemistry
Power management
Power sources
R&D
Rechargeable batteries
Research & development
Vanadium
title Test Cell for Membrane Electrode Assembly of the Vanadium Redox Flow Battery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A54%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Test%20Cell%20for%20Membrane%20Electrode%20Assembly%20of%20the%20Vanadium%20Redox%20Flow%20Battery&rft.jtitle=Doklady.%20Physical%20chemistry%20(1991)&rft.au=Petrov,%20M.%20M.&rft.date=2020-03-01&rft.volume=491&rft.issue=1&rft.spage=19&rft.epage=23&rft.pages=19-23&rft.issn=0012-5016&rft.eissn=1608-3121&rft_id=info:doi/10.1134/S0012501620030021&rft_dat=%3Cproquest_cross%3E2425623871%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-e7cabd846af38642468e1355fd8668da6f478687067ce26f8f9aa85dded6c6923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2425623871&rft_id=info:pmid/&rfr_iscdi=true