Loading…

Structured identification for network reconstruction of RC-models

Resistive-capacitive (RC) networks are used to model various processes in engineering, physics or biology. We consider the problem of recovering the network connection structure from measured input-output data. We address this problem as a structured identification one, that is, we assume to have a...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-07
Main Authors: Calzavara, Gabriele, Consolini, Luca, Kavaja, Juxhino
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Calzavara, Gabriele
Consolini, Luca
Kavaja, Juxhino
description Resistive-capacitive (RC) networks are used to model various processes in engineering, physics or biology. We consider the problem of recovering the network connection structure from measured input-output data. We address this problem as a structured identification one, that is, we assume to have a state-space model of the system (identified with standard techniques, such as subspace methods) and find a coordinate transformation that puts the identified system in a form that reveals the nodes connection structure. We characterize the solution set, that is, the set of all possible RC-networks that can be associated to the input-output data. We present a possible solution algorithm and show some computational experiments.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2425865029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425865029</sourcerecordid><originalsourceid>FETCH-proquest_journals_24258650293</originalsourceid><addsrcrecordid>eNqNyk0KwjAQQOEgCBbtHQKuC3HS1LqUorhW90XaCaTWjE4SvL4_eABXb_G9ichA61VRlwAzkYcwKKWgWoMxOhPbU-TUxcTYS9ejj8667hIdeWmJpcf4JL5Kxo58-K4fIiuPTXGjHsewEFN7GQPmv87Fcr87N4fizvRIGGI7UGL_phZKMHVlFGz0f9cL83U6SQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425865029</pqid></control><display><type>article</type><title>Structured identification for network reconstruction of RC-models</title><source>Publicly Available Content Database</source><creator>Calzavara, Gabriele ; Consolini, Luca ; Kavaja, Juxhino</creator><creatorcontrib>Calzavara, Gabriele ; Consolini, Luca ; Kavaja, Juxhino</creatorcontrib><description>Resistive-capacitive (RC) networks are used to model various processes in engineering, physics or biology. We consider the problem of recovering the network connection structure from measured input-output data. We address this problem as a structured identification one, that is, we assume to have a state-space model of the system (identified with standard techniques, such as subspace methods) and find a coordinate transformation that puts the identified system in a form that reveals the nodes connection structure. We characterize the solution set, that is, the set of all possible RC-networks that can be associated to the input-output data. We present a possible solution algorithm and show some computational experiments.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Coordinate transformations ; Identification methods ; State space models ; Subspace methods</subject><ispartof>arXiv.org, 2020-07</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2425865029?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Calzavara, Gabriele</creatorcontrib><creatorcontrib>Consolini, Luca</creatorcontrib><creatorcontrib>Kavaja, Juxhino</creatorcontrib><title>Structured identification for network reconstruction of RC-models</title><title>arXiv.org</title><description>Resistive-capacitive (RC) networks are used to model various processes in engineering, physics or biology. We consider the problem of recovering the network connection structure from measured input-output data. We address this problem as a structured identification one, that is, we assume to have a state-space model of the system (identified with standard techniques, such as subspace methods) and find a coordinate transformation that puts the identified system in a form that reveals the nodes connection structure. We characterize the solution set, that is, the set of all possible RC-networks that can be associated to the input-output data. We present a possible solution algorithm and show some computational experiments.</description><subject>Algorithms</subject><subject>Coordinate transformations</subject><subject>Identification methods</subject><subject>State space models</subject><subject>Subspace methods</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyk0KwjAQQOEgCBbtHQKuC3HS1LqUorhW90XaCaTWjE4SvL4_eABXb_G9ichA61VRlwAzkYcwKKWgWoMxOhPbU-TUxcTYS9ejj8667hIdeWmJpcf4JL5Kxo58-K4fIiuPTXGjHsewEFN7GQPmv87Fcr87N4fizvRIGGI7UGL_phZKMHVlFGz0f9cL83U6SQ</recordid><startdate>20200720</startdate><enddate>20200720</enddate><creator>Calzavara, Gabriele</creator><creator>Consolini, Luca</creator><creator>Kavaja, Juxhino</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200720</creationdate><title>Structured identification for network reconstruction of RC-models</title><author>Calzavara, Gabriele ; Consolini, Luca ; Kavaja, Juxhino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24258650293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Coordinate transformations</topic><topic>Identification methods</topic><topic>State space models</topic><topic>Subspace methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Calzavara, Gabriele</creatorcontrib><creatorcontrib>Consolini, Luca</creatorcontrib><creatorcontrib>Kavaja, Juxhino</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calzavara, Gabriele</au><au>Consolini, Luca</au><au>Kavaja, Juxhino</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Structured identification for network reconstruction of RC-models</atitle><jtitle>arXiv.org</jtitle><date>2020-07-20</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Resistive-capacitive (RC) networks are used to model various processes in engineering, physics or biology. We consider the problem of recovering the network connection structure from measured input-output data. We address this problem as a structured identification one, that is, we assume to have a state-space model of the system (identified with standard techniques, such as subspace methods) and find a coordinate transformation that puts the identified system in a form that reveals the nodes connection structure. We characterize the solution set, that is, the set of all possible RC-networks that can be associated to the input-output data. We present a possible solution algorithm and show some computational experiments.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2425865029
source Publicly Available Content Database
subjects Algorithms
Coordinate transformations
Identification methods
State space models
Subspace methods
title Structured identification for network reconstruction of RC-models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Structured%20identification%20for%20network%20reconstruction%20of%20RC-models&rft.jtitle=arXiv.org&rft.au=Calzavara,%20Gabriele&rft.date=2020-07-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2425865029%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24258650293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2425865029&rft_id=info:pmid/&rfr_iscdi=true