Loading…
Strong quantum nonlocality for multipartite entangled states
Recently, Halder \emph{et al.} [S. Halder \emph{et al.}, Phys. Rev. Lett. \textbf{122}, 040403 (2019)] present two sets of strong nonlocality of orthogonal product states based on the local irreducibility. However, for a set of locally indistinguishable orthogonal entangled states, the remaining que...
Saved in:
Published in: | arXiv.org 2020-07 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Zhi-Chao, Zhang Tian, Guojing Tian-Qing Cao |
description | Recently, Halder \emph{et al.} [S. Halder \emph{et al.}, Phys. Rev. Lett. \textbf{122}, 040403 (2019)] present two sets of strong nonlocality of orthogonal product states based on the local irreducibility. However, for a set of locally indistinguishable orthogonal entangled states, the remaining question is whether the states can reveal strong quantum nonlocality. Here we present a general definition of strong quantum nonlocality based on the local indistinguishability. Then, in \(2 \otimes 2 \otimes 2\) quantum system, we show that a set of orthogonal entangled states is locally reducible but locally indistinguishable in all bipartitions, which means the states have strong nonlocality. Furthermore, we generalize the result in N-qubit quantum system, where \(N\geqslant 3\). Finally, we also construct a class of strong nonlocality of entangled states in \(d\otimes d\otimes \cdots \otimes d, d\geqslant 3\). Our results extend the phenomenon of strong nonlocality for entangled states. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2426017023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2426017023</sourcerecordid><originalsourceid>FETCH-proquest_journals_24260170233</originalsourceid><addsrcrecordid>eNqNjrsKwjAUQIMgWLT_EHAupDd9OLiJ4q57CZqWlPSmzb0Z_Hs7-AFOZzhnOBuRgdZlcaoAdiInGpVS0LRQ1zoT5wfHgINckkFOk8SAPryMd_yRfYhySp7dbCI7ttIiGxy8fUtiw5YOYtsbTzb_cS-Ot-vzci_mGJZkibsxpIir6qCCRpWtWlf-q77IqTic</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426017023</pqid></control><display><type>article</type><title>Strong quantum nonlocality for multipartite entangled states</title><source>Publicly Available Content (ProQuest)</source><creator>Zhi-Chao, Zhang ; Tian, Guojing ; Tian-Qing Cao</creator><creatorcontrib>Zhi-Chao, Zhang ; Tian, Guojing ; Tian-Qing Cao</creatorcontrib><description>Recently, Halder \emph{et al.} [S. Halder \emph{et al.}, Phys. Rev. Lett. \textbf{122}, 040403 (2019)] present two sets of strong nonlocality of orthogonal product states based on the local irreducibility. However, for a set of locally indistinguishable orthogonal entangled states, the remaining question is whether the states can reveal strong quantum nonlocality. Here we present a general definition of strong quantum nonlocality based on the local indistinguishability. Then, in \(2 \otimes 2 \otimes 2\) quantum system, we show that a set of orthogonal entangled states is locally reducible but locally indistinguishable in all bipartitions, which means the states have strong nonlocality. Furthermore, we generalize the result in N-qubit quantum system, where \(N\geqslant 3\). Finally, we also construct a class of strong nonlocality of entangled states in \(d\otimes d\otimes \cdots \otimes d, d\geqslant 3\). Our results extend the phenomenon of strong nonlocality for entangled states.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Entangled states ; Quantum theory ; Qubits (quantum computing)</subject><ispartof>arXiv.org, 2020-07</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2426017023?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Zhi-Chao, Zhang</creatorcontrib><creatorcontrib>Tian, Guojing</creatorcontrib><creatorcontrib>Tian-Qing Cao</creatorcontrib><title>Strong quantum nonlocality for multipartite entangled states</title><title>arXiv.org</title><description>Recently, Halder \emph{et al.} [S. Halder \emph{et al.}, Phys. Rev. Lett. \textbf{122}, 040403 (2019)] present two sets of strong nonlocality of orthogonal product states based on the local irreducibility. However, for a set of locally indistinguishable orthogonal entangled states, the remaining question is whether the states can reveal strong quantum nonlocality. Here we present a general definition of strong quantum nonlocality based on the local indistinguishability. Then, in \(2 \otimes 2 \otimes 2\) quantum system, we show that a set of orthogonal entangled states is locally reducible but locally indistinguishable in all bipartitions, which means the states have strong nonlocality. Furthermore, we generalize the result in N-qubit quantum system, where \(N\geqslant 3\). Finally, we also construct a class of strong nonlocality of entangled states in \(d\otimes d\otimes \cdots \otimes d, d\geqslant 3\). Our results extend the phenomenon of strong nonlocality for entangled states.</description><subject>Entangled states</subject><subject>Quantum theory</subject><subject>Qubits (quantum computing)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjrsKwjAUQIMgWLT_EHAupDd9OLiJ4q57CZqWlPSmzb0Z_Hs7-AFOZzhnOBuRgdZlcaoAdiInGpVS0LRQ1zoT5wfHgINckkFOk8SAPryMd_yRfYhySp7dbCI7ttIiGxy8fUtiw5YOYtsbTzb_cS-Ot-vzci_mGJZkibsxpIir6qCCRpWtWlf-q77IqTic</recordid><startdate>20200724</startdate><enddate>20200724</enddate><creator>Zhi-Chao, Zhang</creator><creator>Tian, Guojing</creator><creator>Tian-Qing Cao</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200724</creationdate><title>Strong quantum nonlocality for multipartite entangled states</title><author>Zhi-Chao, Zhang ; Tian, Guojing ; Tian-Qing Cao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24260170233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Entangled states</topic><topic>Quantum theory</topic><topic>Qubits (quantum computing)</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhi-Chao, Zhang</creatorcontrib><creatorcontrib>Tian, Guojing</creatorcontrib><creatorcontrib>Tian-Qing Cao</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhi-Chao, Zhang</au><au>Tian, Guojing</au><au>Tian-Qing Cao</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Strong quantum nonlocality for multipartite entangled states</atitle><jtitle>arXiv.org</jtitle><date>2020-07-24</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Recently, Halder \emph{et al.} [S. Halder \emph{et al.}, Phys. Rev. Lett. \textbf{122}, 040403 (2019)] present two sets of strong nonlocality of orthogonal product states based on the local irreducibility. However, for a set of locally indistinguishable orthogonal entangled states, the remaining question is whether the states can reveal strong quantum nonlocality. Here we present a general definition of strong quantum nonlocality based on the local indistinguishability. Then, in \(2 \otimes 2 \otimes 2\) quantum system, we show that a set of orthogonal entangled states is locally reducible but locally indistinguishable in all bipartitions, which means the states have strong nonlocality. Furthermore, we generalize the result in N-qubit quantum system, where \(N\geqslant 3\). Finally, we also construct a class of strong nonlocality of entangled states in \(d\otimes d\otimes \cdots \otimes d, d\geqslant 3\). Our results extend the phenomenon of strong nonlocality for entangled states.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2426017023 |
source | Publicly Available Content (ProQuest) |
subjects | Entangled states Quantum theory Qubits (quantum computing) |
title | Strong quantum nonlocality for multipartite entangled states |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A15%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Strong%20quantum%20nonlocality%20for%20multipartite%20entangled%20states&rft.jtitle=arXiv.org&rft.au=Zhi-Chao,%20Zhang&rft.date=2020-07-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2426017023%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24260170233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2426017023&rft_id=info:pmid/&rfr_iscdi=true |