Loading…

Effect of Sea-ice Drift on the Onset of Snowball Climate on Rapidly Rotating Aqua-planets

Previous studies have shown that sea-ice drift effectively promote the onset of a globally ice-covered snowball climate for paleo Earth and for tidally locked planets around low-mass stars. Here, we investigate whether sea-ice drift can influence the stellar flux threshold for a snowball climate ons...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-07
Main Authors: Wenshuo Yue, Yang, Jun
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Previous studies have shown that sea-ice drift effectively promote the onset of a globally ice-covered snowball climate for paleo Earth and for tidally locked planets around low-mass stars. Here, we investigate whether sea-ice drift can influence the stellar flux threshold for a snowball climate onset on rapidly rotating aqua-planets around a Sun-like star. Using a fully coupled atmosphere--land--ocean--sea-ice model with turning on or off sea-ice drift, a circular orbit with no eccentricity (e=0) and an eccentric orbit (e=0.2) are examined. When sea-ice drift is turned off, the stellar flux threshold for the snowball onset is 1250--1275 and 1173--1199 W m^-2 for e=0 and 0.2, respectively. The difference is mainly due to the poleward retreat of sea ice and snow edges when the planet is close to the perihelion in the eccentric orbit. When sea-ice drift is turned on, the respective stellar flux threshold is 1335--1350 and 1250--1276 W m^-2. These mean that sea-ice drift increases the snowball onset threshold by ~80 W m^-2 for both e=0 and 0.2, promoting the formation of a snowball climate state. We further show that oceanic dynamics have a small effect,
ISSN:2331-8422
DOI:10.48550/arxiv.2007.11179