Loading…
Block diagonal dominance of matrices revisited: Bounds for the norms of inverses and eigenvalue inclusion sets
We generalize the bounds on the inverses of diagonally dominant matrices obtained in [16] from scalar to block tridiagonal matrices. Our derivations are based on a generalization of the classical condition of block diagonal dominance of matrices given by Feingold and Varga in [11]. Based on this gen...
Saved in:
Published in: | Linear algebra and its applications 2018-09, Vol.553, p.365-383 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-1b0f48b862a6e4bca8b4083560aea5fd6062216df0326189c90ef136590840ba3 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-1b0f48b862a6e4bca8b4083560aea5fd6062216df0326189c90ef136590840ba3 |
container_end_page | 383 |
container_issue | |
container_start_page | 365 |
container_title | Linear algebra and its applications |
container_volume | 553 |
creator | Echeverría, Carlos Liesen, Jörg Nabben, Reinhard |
description | We generalize the bounds on the inverses of diagonally dominant matrices obtained in [16] from scalar to block tridiagonal matrices. Our derivations are based on a generalization of the classical condition of block diagonal dominance of matrices given by Feingold and Varga in [11]. Based on this generalization, which was recently presented in [3], we also derive a variant of the Gershgorin Circle Theorem for general block matrices which can provide tighter spectral inclusion regions than those obtained by Feingold and Varga. |
doi_str_mv | 10.1016/j.laa.2018.04.025 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2426550836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379518302192</els_id><sourcerecordid>2426550836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-1b0f48b862a6e4bca8b4083560aea5fd6062216df0326189c90ef136590840ba3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD9-gLeA510n2Wya6knFLxC86Dlkk9mauk1qslvw35tSz54Ghud9mXkIuWBQM2DyalUPxtQcmKpB1MDbAzJjat5UTLXykMwAuKia-aI9Jic5rwBAzIHPSLgbov2izptlDGagLq59MMEijT1dmzF5i5km3PrsR3TX9C5OwWXax0THT6QhpnXesT5sMeXCmuAo-iWGrRkmLHs7TNnHQDOO-Ywc9WbIeP43T8nH48P7_XP1-vb0cn_7WtlGqrFiHfRCdUpyI1F01qhOgGpaCQZN2zsJknMmXQ8Nl0wt7AKwZ41sF6AEdKY5JZf73k2K3xPmUa_ilMqDWXPBZduWNlkotqdsijkn7PUm-bVJP5qB3mnVK1206p1WDUIXrSVzs89gOX_rMelsPRZhzie0o3bR_5P-Ba9ngHM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426550836</pqid></control><display><type>article</type><title>Block diagonal dominance of matrices revisited: Bounds for the norms of inverses and eigenvalue inclusion sets</title><source>ScienceDirect Journals</source><creator>Echeverría, Carlos ; Liesen, Jörg ; Nabben, Reinhard</creator><creatorcontrib>Echeverría, Carlos ; Liesen, Jörg ; Nabben, Reinhard</creatorcontrib><description>We generalize the bounds on the inverses of diagonally dominant matrices obtained in [16] from scalar to block tridiagonal matrices. Our derivations are based on a generalization of the classical condition of block diagonal dominance of matrices given by Feingold and Varga in [11]. Based on this generalization, which was recently presented in [3], we also derive a variant of the Gershgorin Circle Theorem for general block matrices which can provide tighter spectral inclusion regions than those obtained by Feingold and Varga.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2018.04.025</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Block diagonal dominance ; Block matrices ; Block tridiagonal matrices ; Decay bounds for the inverse ; Eigenvalue inclusion regions ; Eigenvalues ; Gershgorin Circle Theorem ; Linear algebra ; Norms</subject><ispartof>Linear algebra and its applications, 2018-09, Vol.553, p.365-383</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Sep 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-1b0f48b862a6e4bca8b4083560aea5fd6062216df0326189c90ef136590840ba3</citedby><cites>FETCH-LOGICAL-c368t-1b0f48b862a6e4bca8b4083560aea5fd6062216df0326189c90ef136590840ba3</cites><orcidid>0000-0002-1670-1405</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Echeverría, Carlos</creatorcontrib><creatorcontrib>Liesen, Jörg</creatorcontrib><creatorcontrib>Nabben, Reinhard</creatorcontrib><title>Block diagonal dominance of matrices revisited: Bounds for the norms of inverses and eigenvalue inclusion sets</title><title>Linear algebra and its applications</title><description>We generalize the bounds on the inverses of diagonally dominant matrices obtained in [16] from scalar to block tridiagonal matrices. Our derivations are based on a generalization of the classical condition of block diagonal dominance of matrices given by Feingold and Varga in [11]. Based on this generalization, which was recently presented in [3], we also derive a variant of the Gershgorin Circle Theorem for general block matrices which can provide tighter spectral inclusion regions than those obtained by Feingold and Varga.</description><subject>Block diagonal dominance</subject><subject>Block matrices</subject><subject>Block tridiagonal matrices</subject><subject>Decay bounds for the inverse</subject><subject>Eigenvalue inclusion regions</subject><subject>Eigenvalues</subject><subject>Gershgorin Circle Theorem</subject><subject>Linear algebra</subject><subject>Norms</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWD9-gLeA510n2Wya6knFLxC86Dlkk9mauk1qslvw35tSz54Ghud9mXkIuWBQM2DyalUPxtQcmKpB1MDbAzJjat5UTLXykMwAuKia-aI9Jic5rwBAzIHPSLgbov2izptlDGagLq59MMEijT1dmzF5i5km3PrsR3TX9C5OwWXax0THT6QhpnXesT5sMeXCmuAo-iWGrRkmLHs7TNnHQDOO-Ywc9WbIeP43T8nH48P7_XP1-vb0cn_7WtlGqrFiHfRCdUpyI1F01qhOgGpaCQZN2zsJknMmXQ8Nl0wt7AKwZ41sF6AEdKY5JZf73k2K3xPmUa_ilMqDWXPBZduWNlkotqdsijkn7PUm-bVJP5qB3mnVK1206p1WDUIXrSVzs89gOX_rMelsPRZhzie0o3bR_5P-Ba9ngHM</recordid><startdate>20180915</startdate><enddate>20180915</enddate><creator>Echeverría, Carlos</creator><creator>Liesen, Jörg</creator><creator>Nabben, Reinhard</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1670-1405</orcidid></search><sort><creationdate>20180915</creationdate><title>Block diagonal dominance of matrices revisited: Bounds for the norms of inverses and eigenvalue inclusion sets</title><author>Echeverría, Carlos ; Liesen, Jörg ; Nabben, Reinhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-1b0f48b862a6e4bca8b4083560aea5fd6062216df0326189c90ef136590840ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Block diagonal dominance</topic><topic>Block matrices</topic><topic>Block tridiagonal matrices</topic><topic>Decay bounds for the inverse</topic><topic>Eigenvalue inclusion regions</topic><topic>Eigenvalues</topic><topic>Gershgorin Circle Theorem</topic><topic>Linear algebra</topic><topic>Norms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Echeverría, Carlos</creatorcontrib><creatorcontrib>Liesen, Jörg</creatorcontrib><creatorcontrib>Nabben, Reinhard</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Echeverría, Carlos</au><au>Liesen, Jörg</au><au>Nabben, Reinhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Block diagonal dominance of matrices revisited: Bounds for the norms of inverses and eigenvalue inclusion sets</atitle><jtitle>Linear algebra and its applications</jtitle><date>2018-09-15</date><risdate>2018</risdate><volume>553</volume><spage>365</spage><epage>383</epage><pages>365-383</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>We generalize the bounds on the inverses of diagonally dominant matrices obtained in [16] from scalar to block tridiagonal matrices. Our derivations are based on a generalization of the classical condition of block diagonal dominance of matrices given by Feingold and Varga in [11]. Based on this generalization, which was recently presented in [3], we also derive a variant of the Gershgorin Circle Theorem for general block matrices which can provide tighter spectral inclusion regions than those obtained by Feingold and Varga.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2018.04.025</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-1670-1405</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3795 |
ispartof | Linear algebra and its applications, 2018-09, Vol.553, p.365-383 |
issn | 0024-3795 1873-1856 |
language | eng |
recordid | cdi_proquest_journals_2426550836 |
source | ScienceDirect Journals |
subjects | Block diagonal dominance Block matrices Block tridiagonal matrices Decay bounds for the inverse Eigenvalue inclusion regions Eigenvalues Gershgorin Circle Theorem Linear algebra Norms |
title | Block diagonal dominance of matrices revisited: Bounds for the norms of inverses and eigenvalue inclusion sets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A07%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Block%20diagonal%20dominance%20of%20matrices%20revisited:%20Bounds%20for%20the%20norms%20of%20inverses%20and%20eigenvalue%20inclusion%20sets&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Echeverr%C3%ADa,%20Carlos&rft.date=2018-09-15&rft.volume=553&rft.spage=365&rft.epage=383&rft.pages=365-383&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2018.04.025&rft_dat=%3Cproquest_cross%3E2426550836%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-1b0f48b862a6e4bca8b4083560aea5fd6062216df0326189c90ef136590840ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2426550836&rft_id=info:pmid/&rfr_iscdi=true |