Loading…

Generalized adiabatic approximation to the asymmetric quantum Rabi model: conical intersections and geometric phases

The asymmetric quantum Rabi model (AQRM), which describes the interaction between a quantum harmonic oscillator and a biased qubit, arises naturally in circuit quantum electrodynamic circuits and devices. The existence of hidden symmetry in the AQRM leads to a rich energy landscape of conical inters...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-08
Main Authors: Zi-Min, Li, Ferri, Devid, Tilbrook, David, Batchelor, Murray T
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zi-Min, Li
Ferri, Devid
Tilbrook, David
Batchelor, Murray T
description The asymmetric quantum Rabi model (AQRM), which describes the interaction between a quantum harmonic oscillator and a biased qubit, arises naturally in circuit quantum electrodynamic circuits and devices. The existence of hidden symmetry in the AQRM leads to a rich energy landscape of conical intersections (CIs) and thus to interesting topological properties. However, current approximations to the AQRM fail to reproduce these CIs correctly. To overcome these limitations we propose a generalized adiabatic approximation (GAA) to describe the energy spectrum of the AQRM. This is achieved by combining the perturbative adiabatic approximation and the exact exceptional solutions to the AQRM. The GAA provides substantial improvement to the existing approaches and pushes the limit of the perturbative treatment into non-perturbative regimes. As a preliminary example of the application of the GAA we calculate the geometric phases around CIs associated with the AQRM.
doi_str_mv 10.48550/arxiv.2007.11969
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2426696248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2426696248</sourcerecordid><originalsourceid>FETCH-LOGICAL-a528-4ba49c8c07ee5a4582d30f3a5e9abfb3d25595423ca97048281770430d7a98ca3</originalsourceid><addsrcrecordid>eNotj01LAzEYhIMgWGp_gLeA563ZfOwm3qRoFQqC9F7eTd61KbtJu8lK9de7Yk_DMDwzDCF3JVtKrRR7gOHsv5acsXpZlqYyV2TGhSgLLTm_IYuUDowxXtVcKTEjeY0BB-j8DzoKzkMD2VsKx-MQz76fTAw0R5r3SCF99z3mYcpPI4Q89vQDGk_76LB7pDYGb6GjPmQcEto_NFEIjn5ivHDHPSRMt-S6hS7h4qJzsn153q5ei837-m31tClAcV3IBqSx2rIaUYFUmjvBWgEKDTRtI9z0wCjJhQVTM6m5LutJBXM1GG1BzMn9f-305TRiyrtDHIcwLe645FVlKi61-AUlHV6z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426696248</pqid></control><display><type>article</type><title>Generalized adiabatic approximation to the asymmetric quantum Rabi model: conical intersections and geometric phases</title><source>Publicly Available Content Database</source><creator>Zi-Min, Li ; Ferri, Devid ; Tilbrook, David ; Batchelor, Murray T</creator><creatorcontrib>Zi-Min, Li ; Ferri, Devid ; Tilbrook, David ; Batchelor, Murray T</creatorcontrib><description>The asymmetric quantum Rabi model (AQRM), which describes the interaction between a quantum harmonic oscillator and a biased qubit, arises naturally in circuit quantum electrodynamic circuits and devices. The existence of hidden symmetry in the AQRM leads to a rich energy landscape of conical intersections (CIs) and thus to interesting topological properties. However, current approximations to the AQRM fail to reproduce these CIs correctly. To overcome these limitations we propose a generalized adiabatic approximation (GAA) to describe the energy spectrum of the AQRM. This is achieved by combining the perturbative adiabatic approximation and the exact exceptional solutions to the AQRM. The GAA provides substantial improvement to the existing approaches and pushes the limit of the perturbative treatment into non-perturbative regimes. As a preliminary example of the application of the GAA we calculate the geometric phases around CIs associated with the AQRM.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2007.11969</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymmetry ; Closed loops ; Exact solutions ; Intersections ; Phases ; Qubits (quantum computing)</subject><ispartof>arXiv.org, 2021-08</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2426696248?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Zi-Min, Li</creatorcontrib><creatorcontrib>Ferri, Devid</creatorcontrib><creatorcontrib>Tilbrook, David</creatorcontrib><creatorcontrib>Batchelor, Murray T</creatorcontrib><title>Generalized adiabatic approximation to the asymmetric quantum Rabi model: conical intersections and geometric phases</title><title>arXiv.org</title><description>The asymmetric quantum Rabi model (AQRM), which describes the interaction between a quantum harmonic oscillator and a biased qubit, arises naturally in circuit quantum electrodynamic circuits and devices. The existence of hidden symmetry in the AQRM leads to a rich energy landscape of conical intersections (CIs) and thus to interesting topological properties. However, current approximations to the AQRM fail to reproduce these CIs correctly. To overcome these limitations we propose a generalized adiabatic approximation (GAA) to describe the energy spectrum of the AQRM. This is achieved by combining the perturbative adiabatic approximation and the exact exceptional solutions to the AQRM. The GAA provides substantial improvement to the existing approaches and pushes the limit of the perturbative treatment into non-perturbative regimes. As a preliminary example of the application of the GAA we calculate the geometric phases around CIs associated with the AQRM.</description><subject>Asymmetry</subject><subject>Closed loops</subject><subject>Exact solutions</subject><subject>Intersections</subject><subject>Phases</subject><subject>Qubits (quantum computing)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj01LAzEYhIMgWGp_gLeA563ZfOwm3qRoFQqC9F7eTd61KbtJu8lK9de7Yk_DMDwzDCF3JVtKrRR7gOHsv5acsXpZlqYyV2TGhSgLLTm_IYuUDowxXtVcKTEjeY0BB-j8DzoKzkMD2VsKx-MQz76fTAw0R5r3SCF99z3mYcpPI4Q89vQDGk_76LB7pDYGb6GjPmQcEto_NFEIjn5ivHDHPSRMt-S6hS7h4qJzsn153q5ei837-m31tClAcV3IBqSx2rIaUYFUmjvBWgEKDTRtI9z0wCjJhQVTM6m5LutJBXM1GG1BzMn9f-305TRiyrtDHIcwLe645FVlKi61-AUlHV6z</recordid><startdate>20210818</startdate><enddate>20210818</enddate><creator>Zi-Min, Li</creator><creator>Ferri, Devid</creator><creator>Tilbrook, David</creator><creator>Batchelor, Murray T</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210818</creationdate><title>Generalized adiabatic approximation to the asymmetric quantum Rabi model: conical intersections and geometric phases</title><author>Zi-Min, Li ; Ferri, Devid ; Tilbrook, David ; Batchelor, Murray T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a528-4ba49c8c07ee5a4582d30f3a5e9abfb3d25595423ca97048281770430d7a98ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymmetry</topic><topic>Closed loops</topic><topic>Exact solutions</topic><topic>Intersections</topic><topic>Phases</topic><topic>Qubits (quantum computing)</topic><toplevel>online_resources</toplevel><creatorcontrib>Zi-Min, Li</creatorcontrib><creatorcontrib>Ferri, Devid</creatorcontrib><creatorcontrib>Tilbrook, David</creatorcontrib><creatorcontrib>Batchelor, Murray T</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zi-Min, Li</au><au>Ferri, Devid</au><au>Tilbrook, David</au><au>Batchelor, Murray T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized adiabatic approximation to the asymmetric quantum Rabi model: conical intersections and geometric phases</atitle><jtitle>arXiv.org</jtitle><date>2021-08-18</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>The asymmetric quantum Rabi model (AQRM), which describes the interaction between a quantum harmonic oscillator and a biased qubit, arises naturally in circuit quantum electrodynamic circuits and devices. The existence of hidden symmetry in the AQRM leads to a rich energy landscape of conical intersections (CIs) and thus to interesting topological properties. However, current approximations to the AQRM fail to reproduce these CIs correctly. To overcome these limitations we propose a generalized adiabatic approximation (GAA) to describe the energy spectrum of the AQRM. This is achieved by combining the perturbative adiabatic approximation and the exact exceptional solutions to the AQRM. The GAA provides substantial improvement to the existing approaches and pushes the limit of the perturbative treatment into non-perturbative regimes. As a preliminary example of the application of the GAA we calculate the geometric phases around CIs associated with the AQRM.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2007.11969</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2426696248
source Publicly Available Content Database
subjects Asymmetry
Closed loops
Exact solutions
Intersections
Phases
Qubits (quantum computing)
title Generalized adiabatic approximation to the asymmetric quantum Rabi model: conical intersections and geometric phases
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A33%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20adiabatic%20approximation%20to%20the%20asymmetric%20quantum%20Rabi%20model:%20conical%20intersections%20and%20geometric%20phases&rft.jtitle=arXiv.org&rft.au=Zi-Min,%20Li&rft.date=2021-08-18&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2007.11969&rft_dat=%3Cproquest%3E2426696248%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a528-4ba49c8c07ee5a4582d30f3a5e9abfb3d25595423ca97048281770430d7a98ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2426696248&rft_id=info:pmid/&rfr_iscdi=true