Loading…
Rubber-Liquid Resonator
The acoustic characteristics of a rubber-liquid resonator are calculated, combining the properties of an empty rubber cavity, a Helmholtz resonator, and a water–air resonator, gas bubble in a viscoelastic medium and in a shell, and a bubble in a liquid. The equation of the forced oscillations of the...
Saved in:
Published in: | Acoustical physics 2020-07, Vol.66 (4), p.344-351 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-8a4752ada838a8fcc3d0b1442047a55ac1f62119c14c8c968e0eee37888ad9ce3 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-8a4752ada838a8fcc3d0b1442047a55ac1f62119c14c8c968e0eee37888ad9ce3 |
container_end_page | 351 |
container_issue | 4 |
container_start_page | 344 |
container_title | Acoustical physics |
container_volume | 66 |
creator | Kazakov, L. I. |
description | The acoustic characteristics of a rubber-liquid resonator are calculated, combining the properties of an empty rubber cavity, a Helmholtz resonator, and a water–air resonator, gas bubble in a viscoelastic medium and in a shell, and a bubble in a liquid. The equation of the forced oscillations of the resonator in the sound wave field is obtained by applying the principle of least action. The eigenfrequency of the resonator is calculated. The following sound energy dissipation mechanisms are considered: due to the shear viscosity of rubber, the viscosity of liquid in the neck, heat loss in the air chamber, and radiation loss. Experimental data are presented. Possible resonator applications are discussed. |
doi_str_mv | 10.1134/S1063771020020037 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2427544821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2427544821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-8a4752ada838a8fcc3d0b1442047a55ac1f62119c14c8c968e0eee37888ad9ce3</originalsourceid><addsrcrecordid>eNp1j81LxDAQxYMouK6exZvgOZrJ5_Qoi19QWNjVc0jTVLpou5u0B_97Uyp4EGFgBt7vveERcgXsFkDIuy0wLYwBxtk0whyRBSjNqUatjvOdZTrpp-QspR1jrBCCL8jlZqyqEGnZHsa2vt6E1Hdu6OM5OWncRwoXP3tJ3h4fXlfPtFw_vazuS-oF6IGik0ZxVzsU6LDxXtSsAik5k8Yp5Tw0mgMUHqRHX2gMLIQgDCK6uvBBLMnNnLuP_WEMabC7foxdfmm55EZJiRwyBTPlY59SDI3dx_bTxS8LzE797Z_-2cNnT8ps9x7ib_L_pm__U1ml</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2427544821</pqid></control><display><type>article</type><title>Rubber-Liquid Resonator</title><source>Springer Nature</source><creator>Kazakov, L. I.</creator><creatorcontrib>Kazakov, L. I.</creatorcontrib><description>The acoustic characteristics of a rubber-liquid resonator are calculated, combining the properties of an empty rubber cavity, a Helmholtz resonator, and a water–air resonator, gas bubble in a viscoelastic medium and in a shell, and a bubble in a liquid. The equation of the forced oscillations of the resonator in the sound wave field is obtained by applying the principle of least action. The eigenfrequency of the resonator is calculated. The following sound energy dissipation mechanisms are considered: due to the shear viscosity of rubber, the viscosity of liquid in the neck, heat loss in the air chamber, and radiation loss. Experimental data are presented. Possible resonator applications are discussed.</description><identifier>ISSN: 1063-7710</identifier><identifier>EISSN: 1562-6865</identifier><identifier>DOI: 10.1134/S1063771020020037</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Acoustic properties ; Acoustics ; Air chambers ; Cavity resonators ; Energy dissipation ; Forced vibration ; Heat loss ; Helmholtz resonators ; Mathematical analysis ; Physical Acoustics ; Physics ; Physics and Astronomy ; Principle of least action ; Resonant frequencies ; Rubber ; Shear viscosity ; Sound waves ; Viscosity</subject><ispartof>Acoustical physics, 2020-07, Vol.66 (4), p.344-351</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-8a4752ada838a8fcc3d0b1442047a55ac1f62119c14c8c968e0eee37888ad9ce3</citedby><cites>FETCH-LOGICAL-c316t-8a4752ada838a8fcc3d0b1442047a55ac1f62119c14c8c968e0eee37888ad9ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Kazakov, L. I.</creatorcontrib><title>Rubber-Liquid Resonator</title><title>Acoustical physics</title><addtitle>Acoust. Phys</addtitle><description>The acoustic characteristics of a rubber-liquid resonator are calculated, combining the properties of an empty rubber cavity, a Helmholtz resonator, and a water–air resonator, gas bubble in a viscoelastic medium and in a shell, and a bubble in a liquid. The equation of the forced oscillations of the resonator in the sound wave field is obtained by applying the principle of least action. The eigenfrequency of the resonator is calculated. The following sound energy dissipation mechanisms are considered: due to the shear viscosity of rubber, the viscosity of liquid in the neck, heat loss in the air chamber, and radiation loss. Experimental data are presented. Possible resonator applications are discussed.</description><subject>Acoustic properties</subject><subject>Acoustics</subject><subject>Air chambers</subject><subject>Cavity resonators</subject><subject>Energy dissipation</subject><subject>Forced vibration</subject><subject>Heat loss</subject><subject>Helmholtz resonators</subject><subject>Mathematical analysis</subject><subject>Physical Acoustics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Principle of least action</subject><subject>Resonant frequencies</subject><subject>Rubber</subject><subject>Shear viscosity</subject><subject>Sound waves</subject><subject>Viscosity</subject><issn>1063-7710</issn><issn>1562-6865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1j81LxDAQxYMouK6exZvgOZrJ5_Qoi19QWNjVc0jTVLpou5u0B_97Uyp4EGFgBt7vveERcgXsFkDIuy0wLYwBxtk0whyRBSjNqUatjvOdZTrpp-QspR1jrBCCL8jlZqyqEGnZHsa2vt6E1Hdu6OM5OWncRwoXP3tJ3h4fXlfPtFw_vazuS-oF6IGik0ZxVzsU6LDxXtSsAik5k8Yp5Tw0mgMUHqRHX2gMLIQgDCK6uvBBLMnNnLuP_WEMabC7foxdfmm55EZJiRwyBTPlY59SDI3dx_bTxS8LzE797Z_-2cNnT8ps9x7ib_L_pm__U1ml</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Kazakov, L. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200701</creationdate><title>Rubber-Liquid Resonator</title><author>Kazakov, L. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-8a4752ada838a8fcc3d0b1442047a55ac1f62119c14c8c968e0eee37888ad9ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustic properties</topic><topic>Acoustics</topic><topic>Air chambers</topic><topic>Cavity resonators</topic><topic>Energy dissipation</topic><topic>Forced vibration</topic><topic>Heat loss</topic><topic>Helmholtz resonators</topic><topic>Mathematical analysis</topic><topic>Physical Acoustics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Principle of least action</topic><topic>Resonant frequencies</topic><topic>Rubber</topic><topic>Shear viscosity</topic><topic>Sound waves</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kazakov, L. I.</creatorcontrib><collection>CrossRef</collection><jtitle>Acoustical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kazakov, L. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rubber-Liquid Resonator</atitle><jtitle>Acoustical physics</jtitle><stitle>Acoust. Phys</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>66</volume><issue>4</issue><spage>344</spage><epage>351</epage><pages>344-351</pages><issn>1063-7710</issn><eissn>1562-6865</eissn><abstract>The acoustic characteristics of a rubber-liquid resonator are calculated, combining the properties of an empty rubber cavity, a Helmholtz resonator, and a water–air resonator, gas bubble in a viscoelastic medium and in a shell, and a bubble in a liquid. The equation of the forced oscillations of the resonator in the sound wave field is obtained by applying the principle of least action. The eigenfrequency of the resonator is calculated. The following sound energy dissipation mechanisms are considered: due to the shear viscosity of rubber, the viscosity of liquid in the neck, heat loss in the air chamber, and radiation loss. Experimental data are presented. Possible resonator applications are discussed.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063771020020037</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7710 |
ispartof | Acoustical physics, 2020-07, Vol.66 (4), p.344-351 |
issn | 1063-7710 1562-6865 |
language | eng |
recordid | cdi_proquest_journals_2427544821 |
source | Springer Nature |
subjects | Acoustic properties Acoustics Air chambers Cavity resonators Energy dissipation Forced vibration Heat loss Helmholtz resonators Mathematical analysis Physical Acoustics Physics Physics and Astronomy Principle of least action Resonant frequencies Rubber Shear viscosity Sound waves Viscosity |
title | Rubber-Liquid Resonator |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A14%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rubber-Liquid%20Resonator&rft.jtitle=Acoustical%20physics&rft.au=Kazakov,%20L.%20I.&rft.date=2020-07-01&rft.volume=66&rft.issue=4&rft.spage=344&rft.epage=351&rft.pages=344-351&rft.issn=1063-7710&rft.eissn=1562-6865&rft_id=info:doi/10.1134/S1063771020020037&rft_dat=%3Cproquest_cross%3E2427544821%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-8a4752ada838a8fcc3d0b1442047a55ac1f62119c14c8c968e0eee37888ad9ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2427544821&rft_id=info:pmid/&rfr_iscdi=true |