Loading…

Rubber-Liquid Resonator

The acoustic characteristics of a rubber-liquid resonator are calculated, combining the properties of an empty rubber cavity, a Helmholtz resonator, and a water–air resonator, gas bubble in a viscoelastic medium and in a shell, and a bubble in a liquid. The equation of the forced oscillations of the...

Full description

Saved in:
Bibliographic Details
Published in:Acoustical physics 2020-07, Vol.66 (4), p.344-351
Main Author: Kazakov, L. I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-8a4752ada838a8fcc3d0b1442047a55ac1f62119c14c8c968e0eee37888ad9ce3
cites cdi_FETCH-LOGICAL-c316t-8a4752ada838a8fcc3d0b1442047a55ac1f62119c14c8c968e0eee37888ad9ce3
container_end_page 351
container_issue 4
container_start_page 344
container_title Acoustical physics
container_volume 66
creator Kazakov, L. I.
description The acoustic characteristics of a rubber-liquid resonator are calculated, combining the properties of an empty rubber cavity, a Helmholtz resonator, and a water–air resonator, gas bubble in a viscoelastic medium and in a shell, and a bubble in a liquid. The equation of the forced oscillations of the resonator in the sound wave field is obtained by applying the principle of least action. The eigenfrequency of the resonator is calculated. The following sound energy dissipation mechanisms are considered: due to the shear viscosity of rubber, the viscosity of liquid in the neck, heat loss in the air chamber, and radiation loss. Experimental data are presented. Possible resonator applications are discussed.
doi_str_mv 10.1134/S1063771020020037
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2427544821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2427544821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-8a4752ada838a8fcc3d0b1442047a55ac1f62119c14c8c968e0eee37888ad9ce3</originalsourceid><addsrcrecordid>eNp1j81LxDAQxYMouK6exZvgOZrJ5_Qoi19QWNjVc0jTVLpou5u0B_97Uyp4EGFgBt7vveERcgXsFkDIuy0wLYwBxtk0whyRBSjNqUatjvOdZTrpp-QspR1jrBCCL8jlZqyqEGnZHsa2vt6E1Hdu6OM5OWncRwoXP3tJ3h4fXlfPtFw_vazuS-oF6IGik0ZxVzsU6LDxXtSsAik5k8Yp5Tw0mgMUHqRHX2gMLIQgDCK6uvBBLMnNnLuP_WEMabC7foxdfmm55EZJiRwyBTPlY59SDI3dx_bTxS8LzE797Z_-2cNnT8ps9x7ib_L_pm__U1ml</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2427544821</pqid></control><display><type>article</type><title>Rubber-Liquid Resonator</title><source>Springer Nature</source><creator>Kazakov, L. I.</creator><creatorcontrib>Kazakov, L. I.</creatorcontrib><description>The acoustic characteristics of a rubber-liquid resonator are calculated, combining the properties of an empty rubber cavity, a Helmholtz resonator, and a water–air resonator, gas bubble in a viscoelastic medium and in a shell, and a bubble in a liquid. The equation of the forced oscillations of the resonator in the sound wave field is obtained by applying the principle of least action. The eigenfrequency of the resonator is calculated. The following sound energy dissipation mechanisms are considered: due to the shear viscosity of rubber, the viscosity of liquid in the neck, heat loss in the air chamber, and radiation loss. Experimental data are presented. Possible resonator applications are discussed.</description><identifier>ISSN: 1063-7710</identifier><identifier>EISSN: 1562-6865</identifier><identifier>DOI: 10.1134/S1063771020020037</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Acoustic properties ; Acoustics ; Air chambers ; Cavity resonators ; Energy dissipation ; Forced vibration ; Heat loss ; Helmholtz resonators ; Mathematical analysis ; Physical Acoustics ; Physics ; Physics and Astronomy ; Principle of least action ; Resonant frequencies ; Rubber ; Shear viscosity ; Sound waves ; Viscosity</subject><ispartof>Acoustical physics, 2020-07, Vol.66 (4), p.344-351</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-8a4752ada838a8fcc3d0b1442047a55ac1f62119c14c8c968e0eee37888ad9ce3</citedby><cites>FETCH-LOGICAL-c316t-8a4752ada838a8fcc3d0b1442047a55ac1f62119c14c8c968e0eee37888ad9ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Kazakov, L. I.</creatorcontrib><title>Rubber-Liquid Resonator</title><title>Acoustical physics</title><addtitle>Acoust. Phys</addtitle><description>The acoustic characteristics of a rubber-liquid resonator are calculated, combining the properties of an empty rubber cavity, a Helmholtz resonator, and a water–air resonator, gas bubble in a viscoelastic medium and in a shell, and a bubble in a liquid. The equation of the forced oscillations of the resonator in the sound wave field is obtained by applying the principle of least action. The eigenfrequency of the resonator is calculated. The following sound energy dissipation mechanisms are considered: due to the shear viscosity of rubber, the viscosity of liquid in the neck, heat loss in the air chamber, and radiation loss. Experimental data are presented. Possible resonator applications are discussed.</description><subject>Acoustic properties</subject><subject>Acoustics</subject><subject>Air chambers</subject><subject>Cavity resonators</subject><subject>Energy dissipation</subject><subject>Forced vibration</subject><subject>Heat loss</subject><subject>Helmholtz resonators</subject><subject>Mathematical analysis</subject><subject>Physical Acoustics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Principle of least action</subject><subject>Resonant frequencies</subject><subject>Rubber</subject><subject>Shear viscosity</subject><subject>Sound waves</subject><subject>Viscosity</subject><issn>1063-7710</issn><issn>1562-6865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1j81LxDAQxYMouK6exZvgOZrJ5_Qoi19QWNjVc0jTVLpou5u0B_97Uyp4EGFgBt7vveERcgXsFkDIuy0wLYwBxtk0whyRBSjNqUatjvOdZTrpp-QspR1jrBCCL8jlZqyqEGnZHsa2vt6E1Hdu6OM5OWncRwoXP3tJ3h4fXlfPtFw_vazuS-oF6IGik0ZxVzsU6LDxXtSsAik5k8Yp5Tw0mgMUHqRHX2gMLIQgDCK6uvBBLMnNnLuP_WEMabC7foxdfmm55EZJiRwyBTPlY59SDI3dx_bTxS8LzE797Z_-2cNnT8ps9x7ib_L_pm__U1ml</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Kazakov, L. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200701</creationdate><title>Rubber-Liquid Resonator</title><author>Kazakov, L. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-8a4752ada838a8fcc3d0b1442047a55ac1f62119c14c8c968e0eee37888ad9ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustic properties</topic><topic>Acoustics</topic><topic>Air chambers</topic><topic>Cavity resonators</topic><topic>Energy dissipation</topic><topic>Forced vibration</topic><topic>Heat loss</topic><topic>Helmholtz resonators</topic><topic>Mathematical analysis</topic><topic>Physical Acoustics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Principle of least action</topic><topic>Resonant frequencies</topic><topic>Rubber</topic><topic>Shear viscosity</topic><topic>Sound waves</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kazakov, L. I.</creatorcontrib><collection>CrossRef</collection><jtitle>Acoustical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kazakov, L. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rubber-Liquid Resonator</atitle><jtitle>Acoustical physics</jtitle><stitle>Acoust. Phys</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>66</volume><issue>4</issue><spage>344</spage><epage>351</epage><pages>344-351</pages><issn>1063-7710</issn><eissn>1562-6865</eissn><abstract>The acoustic characteristics of a rubber-liquid resonator are calculated, combining the properties of an empty rubber cavity, a Helmholtz resonator, and a water–air resonator, gas bubble in a viscoelastic medium and in a shell, and a bubble in a liquid. The equation of the forced oscillations of the resonator in the sound wave field is obtained by applying the principle of least action. The eigenfrequency of the resonator is calculated. The following sound energy dissipation mechanisms are considered: due to the shear viscosity of rubber, the viscosity of liquid in the neck, heat loss in the air chamber, and radiation loss. Experimental data are presented. Possible resonator applications are discussed.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063771020020037</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7710
ispartof Acoustical physics, 2020-07, Vol.66 (4), p.344-351
issn 1063-7710
1562-6865
language eng
recordid cdi_proquest_journals_2427544821
source Springer Nature
subjects Acoustic properties
Acoustics
Air chambers
Cavity resonators
Energy dissipation
Forced vibration
Heat loss
Helmholtz resonators
Mathematical analysis
Physical Acoustics
Physics
Physics and Astronomy
Principle of least action
Resonant frequencies
Rubber
Shear viscosity
Sound waves
Viscosity
title Rubber-Liquid Resonator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A14%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rubber-Liquid%20Resonator&rft.jtitle=Acoustical%20physics&rft.au=Kazakov,%20L.%20I.&rft.date=2020-07-01&rft.volume=66&rft.issue=4&rft.spage=344&rft.epage=351&rft.pages=344-351&rft.issn=1063-7710&rft.eissn=1562-6865&rft_id=info:doi/10.1134/S1063771020020037&rft_dat=%3Cproquest_cross%3E2427544821%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-8a4752ada838a8fcc3d0b1442047a55ac1f62119c14c8c968e0eee37888ad9ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2427544821&rft_id=info:pmid/&rfr_iscdi=true