Loading…
Soft large margin clustering for unsupervised domain adaptation
Unsupervised domain adaptation (UDA) methods usually perform feature matching between domains by considering the domain shift. However, the cluster structure of data, which is one focus in traditional unsupervised learning, is not considered in those methods. In this paper, we attempt to explore suc...
Saved in:
Published in: | Knowledge-based systems 2020-03, Vol.192, p.105344, Article 105344 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c334t-53c792651109d280243959b309228a20c382e8c5da3d245da13cf70396529f483 |
---|---|
cites | cdi_FETCH-LOGICAL-c334t-53c792651109d280243959b309228a20c382e8c5da3d245da13cf70396529f483 |
container_end_page | |
container_issue | |
container_start_page | 105344 |
container_title | Knowledge-based systems |
container_volume | 192 |
creator | Wang, Yunyun Nie, Lingli Li, Yun Chen, Songcan |
description | Unsupervised domain adaptation (UDA) methods usually perform feature matching between domains by considering the domain shift. However, the cluster structure of data, which is one focus in traditional unsupervised learning, is not considered in those methods. In this paper, we attempt to explore such cluster structure in UDA. Specifically, a general transfer learning framework called Clustering for Domain Adaptation (DAC) has been proposed. DAC explores the cluster structure of target data with the help of source data. It seeks a domain-invariant classifier by simultaneously reducing the distribution shifts between domains and exploring the cluster structure for target instances. The optimization of DAC adopts the ADMM strategy, in which each iteration generates a closed-form solution. Empirical results demonstrate the effectiveness of DAC over several real datasets. |
doi_str_mv | 10.1016/j.knosys.2019.105344 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2427545315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705119306082</els_id><sourcerecordid>2427545315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-53c792651109d280243959b309228a20c382e8c5da3d245da13cf70396529f483</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKvfwMOC562TSdLdXBQp_oOCB_UcYpItWdvNmuwW-u1NWc9e5sHw3gzvR8g1hQUFurxtF99dSIe0QKAyrwTj_ITMaF1hWXGQp2QGUkBZgaDn5CKlFgAQaT0j9--hGYqtjhtX7PL0XWG2Yxpc9N2maEIsxi6NvYt7n5wtbNjpbNFW94MefOguyVmjt8ld_emcfD49fqxeyvXb8-vqYV0axvhQCmYqiUtBKUiLNSBnUsgvBhKx1giG1ehqI6xmFnkWykxTAZNLgbLhNZuTm-luH8PP6NKg2jDGLr9UyLESXDAqsotPLhNDStE1qo8-1zooCuqISrVqQqWOqNSEKsfuppjLDfbeRZWMd51x1kdnBmWD___AL4Zfcm4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2427545315</pqid></control><display><type>article</type><title>Soft large margin clustering for unsupervised domain adaptation</title><source>Library & Information Science Abstracts (LISA)</source><source>Elsevier</source><creator>Wang, Yunyun ; Nie, Lingli ; Li, Yun ; Chen, Songcan</creator><creatorcontrib>Wang, Yunyun ; Nie, Lingli ; Li, Yun ; Chen, Songcan</creatorcontrib><description>Unsupervised domain adaptation (UDA) methods usually perform feature matching between domains by considering the domain shift. However, the cluster structure of data, which is one focus in traditional unsupervised learning, is not considered in those methods. In this paper, we attempt to explore such cluster structure in UDA. Specifically, a general transfer learning framework called Clustering for Domain Adaptation (DAC) has been proposed. DAC explores the cluster structure of target data with the help of source data. It seeks a domain-invariant classifier by simultaneously reducing the distribution shifts between domains and exploring the cluster structure for target instances. The optimization of DAC adopts the ADMM strategy, in which each iteration generates a closed-form solution. Empirical results demonstrate the effectiveness of DAC over several real datasets.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2019.105344</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adaptation ; Cluster structure ; Clustering ; Domain shift ; Domains ; Optimization ; Soft large margin clustering ; Unsupervised domain adaptation ; Unsupervised learning</subject><ispartof>Knowledge-based systems, 2020-03, Vol.192, p.105344, Article 105344</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Mar 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-53c792651109d280243959b309228a20c382e8c5da3d245da13cf70396529f483</citedby><cites>FETCH-LOGICAL-c334t-53c792651109d280243959b309228a20c382e8c5da3d245da13cf70396529f483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,34135</link.rule.ids></links><search><creatorcontrib>Wang, Yunyun</creatorcontrib><creatorcontrib>Nie, Lingli</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Chen, Songcan</creatorcontrib><title>Soft large margin clustering for unsupervised domain adaptation</title><title>Knowledge-based systems</title><description>Unsupervised domain adaptation (UDA) methods usually perform feature matching between domains by considering the domain shift. However, the cluster structure of data, which is one focus in traditional unsupervised learning, is not considered in those methods. In this paper, we attempt to explore such cluster structure in UDA. Specifically, a general transfer learning framework called Clustering for Domain Adaptation (DAC) has been proposed. DAC explores the cluster structure of target data with the help of source data. It seeks a domain-invariant classifier by simultaneously reducing the distribution shifts between domains and exploring the cluster structure for target instances. The optimization of DAC adopts the ADMM strategy, in which each iteration generates a closed-form solution. Empirical results demonstrate the effectiveness of DAC over several real datasets.</description><subject>Adaptation</subject><subject>Cluster structure</subject><subject>Clustering</subject><subject>Domain shift</subject><subject>Domains</subject><subject>Optimization</subject><subject>Soft large margin clustering</subject><subject>Unsupervised domain adaptation</subject><subject>Unsupervised learning</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>F2A</sourceid><recordid>eNp9kE9LAzEQxYMoWKvfwMOC562TSdLdXBQp_oOCB_UcYpItWdvNmuwW-u1NWc9e5sHw3gzvR8g1hQUFurxtF99dSIe0QKAyrwTj_ITMaF1hWXGQp2QGUkBZgaDn5CKlFgAQaT0j9--hGYqtjhtX7PL0XWG2Yxpc9N2maEIsxi6NvYt7n5wtbNjpbNFW94MefOguyVmjt8ld_emcfD49fqxeyvXb8-vqYV0axvhQCmYqiUtBKUiLNSBnUsgvBhKx1giG1ehqI6xmFnkWykxTAZNLgbLhNZuTm-luH8PP6NKg2jDGLr9UyLESXDAqsotPLhNDStE1qo8-1zooCuqISrVqQqWOqNSEKsfuppjLDfbeRZWMd51x1kdnBmWD___AL4Zfcm4</recordid><startdate>20200315</startdate><enddate>20200315</enddate><creator>Wang, Yunyun</creator><creator>Nie, Lingli</creator><creator>Li, Yun</creator><creator>Chen, Songcan</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200315</creationdate><title>Soft large margin clustering for unsupervised domain adaptation</title><author>Wang, Yunyun ; Nie, Lingli ; Li, Yun ; Chen, Songcan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-53c792651109d280243959b309228a20c382e8c5da3d245da13cf70396529f483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation</topic><topic>Cluster structure</topic><topic>Clustering</topic><topic>Domain shift</topic><topic>Domains</topic><topic>Optimization</topic><topic>Soft large margin clustering</topic><topic>Unsupervised domain adaptation</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yunyun</creatorcontrib><creatorcontrib>Nie, Lingli</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Chen, Songcan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yunyun</au><au>Nie, Lingli</au><au>Li, Yun</au><au>Chen, Songcan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soft large margin clustering for unsupervised domain adaptation</atitle><jtitle>Knowledge-based systems</jtitle><date>2020-03-15</date><risdate>2020</risdate><volume>192</volume><spage>105344</spage><pages>105344-</pages><artnum>105344</artnum><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>Unsupervised domain adaptation (UDA) methods usually perform feature matching between domains by considering the domain shift. However, the cluster structure of data, which is one focus in traditional unsupervised learning, is not considered in those methods. In this paper, we attempt to explore such cluster structure in UDA. Specifically, a general transfer learning framework called Clustering for Domain Adaptation (DAC) has been proposed. DAC explores the cluster structure of target data with the help of source data. It seeks a domain-invariant classifier by simultaneously reducing the distribution shifts between domains and exploring the cluster structure for target instances. The optimization of DAC adopts the ADMM strategy, in which each iteration generates a closed-form solution. Empirical results demonstrate the effectiveness of DAC over several real datasets.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2019.105344</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-7051 |
ispartof | Knowledge-based systems, 2020-03, Vol.192, p.105344, Article 105344 |
issn | 0950-7051 1872-7409 |
language | eng |
recordid | cdi_proquest_journals_2427545315 |
source | Library & Information Science Abstracts (LISA); Elsevier |
subjects | Adaptation Cluster structure Clustering Domain shift Domains Optimization Soft large margin clustering Unsupervised domain adaptation Unsupervised learning |
title | Soft large margin clustering for unsupervised domain adaptation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A31%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soft%20large%20margin%20clustering%20for%20unsupervised%20domain%20adaptation&rft.jtitle=Knowledge-based%20systems&rft.au=Wang,%20Yunyun&rft.date=2020-03-15&rft.volume=192&rft.spage=105344&rft.pages=105344-&rft.artnum=105344&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2019.105344&rft_dat=%3Cproquest_cross%3E2427545315%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-53c792651109d280243959b309228a20c382e8c5da3d245da13cf70396529f483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2427545315&rft_id=info:pmid/&rfr_iscdi=true |