Loading…

Soft large margin clustering for unsupervised domain adaptation

Unsupervised domain adaptation (UDA) methods usually perform feature matching between domains by considering the domain shift. However, the cluster structure of data, which is one focus in traditional unsupervised learning, is not considered in those methods. In this paper, we attempt to explore suc...

Full description

Saved in:
Bibliographic Details
Published in:Knowledge-based systems 2020-03, Vol.192, p.105344, Article 105344
Main Authors: Wang, Yunyun, Nie, Lingli, Li, Yun, Chen, Songcan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-53c792651109d280243959b309228a20c382e8c5da3d245da13cf70396529f483
cites cdi_FETCH-LOGICAL-c334t-53c792651109d280243959b309228a20c382e8c5da3d245da13cf70396529f483
container_end_page
container_issue
container_start_page 105344
container_title Knowledge-based systems
container_volume 192
creator Wang, Yunyun
Nie, Lingli
Li, Yun
Chen, Songcan
description Unsupervised domain adaptation (UDA) methods usually perform feature matching between domains by considering the domain shift. However, the cluster structure of data, which is one focus in traditional unsupervised learning, is not considered in those methods. In this paper, we attempt to explore such cluster structure in UDA. Specifically, a general transfer learning framework called Clustering for Domain Adaptation (DAC) has been proposed. DAC explores the cluster structure of target data with the help of source data. It seeks a domain-invariant classifier by simultaneously reducing the distribution shifts between domains and exploring the cluster structure for target instances. The optimization of DAC adopts the ADMM strategy, in which each iteration generates a closed-form solution. Empirical results demonstrate the effectiveness of DAC over several real datasets.
doi_str_mv 10.1016/j.knosys.2019.105344
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2427545315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705119306082</els_id><sourcerecordid>2427545315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-53c792651109d280243959b309228a20c382e8c5da3d245da13cf70396529f483</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKvfwMOC562TSdLdXBQp_oOCB_UcYpItWdvNmuwW-u1NWc9e5sHw3gzvR8g1hQUFurxtF99dSIe0QKAyrwTj_ITMaF1hWXGQp2QGUkBZgaDn5CKlFgAQaT0j9--hGYqtjhtX7PL0XWG2Yxpc9N2maEIsxi6NvYt7n5wtbNjpbNFW94MefOguyVmjt8ld_emcfD49fqxeyvXb8-vqYV0axvhQCmYqiUtBKUiLNSBnUsgvBhKx1giG1ehqI6xmFnkWykxTAZNLgbLhNZuTm-luH8PP6NKg2jDGLr9UyLESXDAqsotPLhNDStE1qo8-1zooCuqISrVqQqWOqNSEKsfuppjLDfbeRZWMd51x1kdnBmWD___AL4Zfcm4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2427545315</pqid></control><display><type>article</type><title>Soft large margin clustering for unsupervised domain adaptation</title><source>Library &amp; Information Science Abstracts (LISA)</source><source>Elsevier</source><creator>Wang, Yunyun ; Nie, Lingli ; Li, Yun ; Chen, Songcan</creator><creatorcontrib>Wang, Yunyun ; Nie, Lingli ; Li, Yun ; Chen, Songcan</creatorcontrib><description>Unsupervised domain adaptation (UDA) methods usually perform feature matching between domains by considering the domain shift. However, the cluster structure of data, which is one focus in traditional unsupervised learning, is not considered in those methods. In this paper, we attempt to explore such cluster structure in UDA. Specifically, a general transfer learning framework called Clustering for Domain Adaptation (DAC) has been proposed. DAC explores the cluster structure of target data with the help of source data. It seeks a domain-invariant classifier by simultaneously reducing the distribution shifts between domains and exploring the cluster structure for target instances. The optimization of DAC adopts the ADMM strategy, in which each iteration generates a closed-form solution. Empirical results demonstrate the effectiveness of DAC over several real datasets.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2019.105344</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adaptation ; Cluster structure ; Clustering ; Domain shift ; Domains ; Optimization ; Soft large margin clustering ; Unsupervised domain adaptation ; Unsupervised learning</subject><ispartof>Knowledge-based systems, 2020-03, Vol.192, p.105344, Article 105344</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Mar 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-53c792651109d280243959b309228a20c382e8c5da3d245da13cf70396529f483</citedby><cites>FETCH-LOGICAL-c334t-53c792651109d280243959b309228a20c382e8c5da3d245da13cf70396529f483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,34135</link.rule.ids></links><search><creatorcontrib>Wang, Yunyun</creatorcontrib><creatorcontrib>Nie, Lingli</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Chen, Songcan</creatorcontrib><title>Soft large margin clustering for unsupervised domain adaptation</title><title>Knowledge-based systems</title><description>Unsupervised domain adaptation (UDA) methods usually perform feature matching between domains by considering the domain shift. However, the cluster structure of data, which is one focus in traditional unsupervised learning, is not considered in those methods. In this paper, we attempt to explore such cluster structure in UDA. Specifically, a general transfer learning framework called Clustering for Domain Adaptation (DAC) has been proposed. DAC explores the cluster structure of target data with the help of source data. It seeks a domain-invariant classifier by simultaneously reducing the distribution shifts between domains and exploring the cluster structure for target instances. The optimization of DAC adopts the ADMM strategy, in which each iteration generates a closed-form solution. Empirical results demonstrate the effectiveness of DAC over several real datasets.</description><subject>Adaptation</subject><subject>Cluster structure</subject><subject>Clustering</subject><subject>Domain shift</subject><subject>Domains</subject><subject>Optimization</subject><subject>Soft large margin clustering</subject><subject>Unsupervised domain adaptation</subject><subject>Unsupervised learning</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>F2A</sourceid><recordid>eNp9kE9LAzEQxYMoWKvfwMOC562TSdLdXBQp_oOCB_UcYpItWdvNmuwW-u1NWc9e5sHw3gzvR8g1hQUFurxtF99dSIe0QKAyrwTj_ITMaF1hWXGQp2QGUkBZgaDn5CKlFgAQaT0j9--hGYqtjhtX7PL0XWG2Yxpc9N2maEIsxi6NvYt7n5wtbNjpbNFW94MefOguyVmjt8ld_emcfD49fqxeyvXb8-vqYV0axvhQCmYqiUtBKUiLNSBnUsgvBhKx1giG1ehqI6xmFnkWykxTAZNLgbLhNZuTm-luH8PP6NKg2jDGLr9UyLESXDAqsotPLhNDStE1qo8-1zooCuqISrVqQqWOqNSEKsfuppjLDfbeRZWMd51x1kdnBmWD___AL4Zfcm4</recordid><startdate>20200315</startdate><enddate>20200315</enddate><creator>Wang, Yunyun</creator><creator>Nie, Lingli</creator><creator>Li, Yun</creator><creator>Chen, Songcan</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200315</creationdate><title>Soft large margin clustering for unsupervised domain adaptation</title><author>Wang, Yunyun ; Nie, Lingli ; Li, Yun ; Chen, Songcan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-53c792651109d280243959b309228a20c382e8c5da3d245da13cf70396529f483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation</topic><topic>Cluster structure</topic><topic>Clustering</topic><topic>Domain shift</topic><topic>Domains</topic><topic>Optimization</topic><topic>Soft large margin clustering</topic><topic>Unsupervised domain adaptation</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yunyun</creatorcontrib><creatorcontrib>Nie, Lingli</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Chen, Songcan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yunyun</au><au>Nie, Lingli</au><au>Li, Yun</au><au>Chen, Songcan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soft large margin clustering for unsupervised domain adaptation</atitle><jtitle>Knowledge-based systems</jtitle><date>2020-03-15</date><risdate>2020</risdate><volume>192</volume><spage>105344</spage><pages>105344-</pages><artnum>105344</artnum><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>Unsupervised domain adaptation (UDA) methods usually perform feature matching between domains by considering the domain shift. However, the cluster structure of data, which is one focus in traditional unsupervised learning, is not considered in those methods. In this paper, we attempt to explore such cluster structure in UDA. Specifically, a general transfer learning framework called Clustering for Domain Adaptation (DAC) has been proposed. DAC explores the cluster structure of target data with the help of source data. It seeks a domain-invariant classifier by simultaneously reducing the distribution shifts between domains and exploring the cluster structure for target instances. The optimization of DAC adopts the ADMM strategy, in which each iteration generates a closed-form solution. Empirical results demonstrate the effectiveness of DAC over several real datasets.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2019.105344</doi></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2020-03, Vol.192, p.105344, Article 105344
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_journals_2427545315
source Library & Information Science Abstracts (LISA); Elsevier
subjects Adaptation
Cluster structure
Clustering
Domain shift
Domains
Optimization
Soft large margin clustering
Unsupervised domain adaptation
Unsupervised learning
title Soft large margin clustering for unsupervised domain adaptation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A31%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soft%20large%20margin%20clustering%20for%20unsupervised%20domain%20adaptation&rft.jtitle=Knowledge-based%20systems&rft.au=Wang,%20Yunyun&rft.date=2020-03-15&rft.volume=192&rft.spage=105344&rft.pages=105344-&rft.artnum=105344&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2019.105344&rft_dat=%3Cproquest_cross%3E2427545315%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-53c792651109d280243959b309228a20c382e8c5da3d245da13cf70396529f483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2427545315&rft_id=info:pmid/&rfr_iscdi=true