Loading…

Domination related parameters in the generalized lexicographic product of graphs

In this paper we begin an exploration of several domination-related parameters (among which are the total, restrained, total restrained, paired, outer connected and total outer connected domination numbers) in the generalized lexicographic product (GLP for short) of graphs. We prove that for each GL...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-07
Main Author: Samodivkin, Vladimir
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Samodivkin, Vladimir
description In this paper we begin an exploration of several domination-related parameters (among which are the total, restrained, total restrained, paired, outer connected and total outer connected domination numbers) in the generalized lexicographic product (GLP for short) of graphs. We prove that for each GLP of graphs there exist several equality chains containing these parameters. Some known results on standard lexicographic product of two graphs are generalized or/and extended. We also obtain results on well \(\mu\)-dominated GLP of graphs, where \(\mu\) stands for any of the above mentioned domination parameters. In particular, we present a characterization of well \(\mu\)-dominated GLP of graphs in the cases when \(\mu\) is the domination number or the total domination number.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2427940662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2427940662</sourcerecordid><originalsourceid>FETCH-proquest_journals_24279406623</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgtGjv8MB1Ib70o2s_uHThvoT2tU1Jk5qkIJ7eIh7A1cDMrFiMQuzTQ4YYscT7gXOORYl5LmJ2P9tRGRmUNeBIy0ANTNLJkQI5D8pA6Ak6MuSkVu-lanqp2nZOTr2qYXK2mesAtoWv8lu2bqX2lPy4Ybvr5XG6pcv5nMmHarCzM0uqMMPymPGiQPHf9QHTyz_P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2427940662</pqid></control><display><type>article</type><title>Domination related parameters in the generalized lexicographic product of graphs</title><source>ProQuest - Publicly Available Content Database</source><creator>Samodivkin, Vladimir</creator><creatorcontrib>Samodivkin, Vladimir</creatorcontrib><description>In this paper we begin an exploration of several domination-related parameters (among which are the total, restrained, total restrained, paired, outer connected and total outer connected domination numbers) in the generalized lexicographic product (GLP for short) of graphs. We prove that for each GLP of graphs there exist several equality chains containing these parameters. Some known results on standard lexicographic product of two graphs are generalized or/and extended. We also obtain results on well \(\mu\)-dominated GLP of graphs, where \(\mu\) stands for any of the above mentioned domination parameters. In particular, we present a characterization of well \(\mu\)-dominated GLP of graphs in the cases when \(\mu\) is the domination number or the total domination number.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Graphs ; Parameters</subject><ispartof>arXiv.org, 2020-07</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2427940662?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Samodivkin, Vladimir</creatorcontrib><title>Domination related parameters in the generalized lexicographic product of graphs</title><title>arXiv.org</title><description>In this paper we begin an exploration of several domination-related parameters (among which are the total, restrained, total restrained, paired, outer connected and total outer connected domination numbers) in the generalized lexicographic product (GLP for short) of graphs. We prove that for each GLP of graphs there exist several equality chains containing these parameters. Some known results on standard lexicographic product of two graphs are generalized or/and extended. We also obtain results on well \(\mu\)-dominated GLP of graphs, where \(\mu\) stands for any of the above mentioned domination parameters. In particular, we present a characterization of well \(\mu\)-dominated GLP of graphs in the cases when \(\mu\) is the domination number or the total domination number.</description><subject>Graphs</subject><subject>Parameters</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNiksKwjAUAIMgtGjv8MB1Ib70o2s_uHThvoT2tU1Jk5qkIJ7eIh7A1cDMrFiMQuzTQ4YYscT7gXOORYl5LmJ2P9tRGRmUNeBIy0ANTNLJkQI5D8pA6Ak6MuSkVu-lanqp2nZOTr2qYXK2mesAtoWv8lu2bqX2lPy4Ybvr5XG6pcv5nMmHarCzM0uqMMPymPGiQPHf9QHTyz_P</recordid><startdate>20200726</startdate><enddate>20200726</enddate><creator>Samodivkin, Vladimir</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200726</creationdate><title>Domination related parameters in the generalized lexicographic product of graphs</title><author>Samodivkin, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24279406623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Graphs</topic><topic>Parameters</topic><toplevel>online_resources</toplevel><creatorcontrib>Samodivkin, Vladimir</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samodivkin, Vladimir</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Domination related parameters in the generalized lexicographic product of graphs</atitle><jtitle>arXiv.org</jtitle><date>2020-07-26</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>In this paper we begin an exploration of several domination-related parameters (among which are the total, restrained, total restrained, paired, outer connected and total outer connected domination numbers) in the generalized lexicographic product (GLP for short) of graphs. We prove that for each GLP of graphs there exist several equality chains containing these parameters. Some known results on standard lexicographic product of two graphs are generalized or/and extended. We also obtain results on well \(\mu\)-dominated GLP of graphs, where \(\mu\) stands for any of the above mentioned domination parameters. In particular, we present a characterization of well \(\mu\)-dominated GLP of graphs in the cases when \(\mu\) is the domination number or the total domination number.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2427940662
source ProQuest - Publicly Available Content Database
subjects Graphs
Parameters
title Domination related parameters in the generalized lexicographic product of graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A37%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Domination%20related%20parameters%20in%20the%20generalized%20lexicographic%20product%20of%20graphs&rft.jtitle=arXiv.org&rft.au=Samodivkin,%20Vladimir&rft.date=2020-07-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2427940662%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24279406623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2427940662&rft_id=info:pmid/&rfr_iscdi=true