Loading…

Design and Performance Analysis of a Lightweight Flexible nZEB

Starting from an experimental activity, the paper describes research analysis that has been conducted on a real case construction with the aim to design its adaptation as a nearly zero energy building in three possible alternative scenarios: (i) a lab for students’ activities in the Lecco University...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2020-08, Vol.12 (15), p.5986
Main Authors: Salvalai, Graziano, Sesana, Marta Maria, Brutti, Diletta, Imperadori, Marco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Starting from an experimental activity, the paper describes research analysis that has been conducted on a real case construction with the aim to design its adaptation as a nearly zero energy building in three possible alternative scenarios: (i) a lab for students’ activities in the Lecco University Campus of Politecnico di Milano; (ii) an Alpine shelter for the implementation of a sustainable mountain tourism in Zermatt; (iii) an emergency shelter for poor communities in Burkina Faso. The use of an easily disassembled and lightweight steel structure coupled with dry-layered technologies allows a tailor-made envelope design, ensuring high thermal comfort, very low energy use, and limited construction times. The three case studies have been designed starting from the same architectural/structural concept. A detailed analysis, by means of finite element method and dynamic building thermal simulations, has been performed to predict the overall performances of each case study. The results show: (i) high replicability of the concept; (ii) high customization of the envelope technologies; (iii) high energy efficiency; and (iv) high thermal comfort of the architecture. The useful energy requirement in all the three analyzed scenarios is minimized and equal to 14.13, 23.88, and 41.83 kWh/m2 year, respectively, for the students’ lab, the Alpine shelter and the emergency shelter. According to this study the energy needs can be covered by renewable energy produced on site, making the architectural concept an interesting modular lightweight solution for a nearly zero energy building with high potential for replicability.
ISSN:2071-1050
2071-1050
DOI:10.3390/su12155986