Loading…

The Drinfeld Yangian of the Queer Lie Superalgebra. Defining Relations

Drinfeld Yangian of a queer Lie superalgebra is defined as the quantization of a Lie bisuperelgebra of twisted polynomial currents. An analogue of the new system of generators of Drinfeld is being constructed. It is proved for the partial case of Lie superalgebra that this so defined Yangian and the...

Full description

Saved in:
Bibliographic Details
Published in:Lobachevskii journal of mathematics 2020-04, Vol.41 (4), p.728-741
Main Author: Stukopin, V. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c268t-ad7d21bd051e1b24554b32cf0867949db4a63709489e66274dbc260c202893eb3
container_end_page 741
container_issue 4
container_start_page 728
container_title Lobachevskii journal of mathematics
container_volume 41
creator Stukopin, V. A.
description Drinfeld Yangian of a queer Lie superalgebra is defined as the quantization of a Lie bisuperelgebra of twisted polynomial currents. An analogue of the new system of generators of Drinfeld is being constructed. It is proved for the partial case of Lie superalgebra that this so defined Yangian and the Yangian, introduced earlier by M. Nazarov using the Faddeev–Reshetikhin–Takhtadzhjan approach, are isomorphic.
doi_str_mv 10.1134/S1995080220040241
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2428098154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2428098154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-ad7d21bd051e1b24554b32cf0867949db4a63709489e66274dbc260c202893eb3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqXwA9gsMaecHcexR9TSglQJQcvAFNnJJaQKTrGTgX-PqyIxIKY73fveO-kRcs1gxlgqbjdM6wwUcA4ggAt2QiZMMZVoLflp3KOcHPRzchHCDiIopZyQ5fYd6cK3rsauom_GNa1xtK_pEO_PI6Kn6xbpZtyjN12D1psZXWDdutY19AU7M7S9C5fkrDZdwKufOSWvy_vt_CFZP60e53frpORSDYmp8oozW0HGkFkuskzYlJc1KJlroSsrjExz0EJplJLnorLRCCUHrnSKNp2Sm2Pu3vefI4ah2PWjd_FlwQVXoBXLRKTYkSp9H4LHutj79sP4r4JBcair-FNX9PCjJ0TWNeh_k_83fQPW0Wl9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2428098154</pqid></control><display><type>article</type><title>The Drinfeld Yangian of the Queer Lie Superalgebra. Defining Relations</title><source>Springer Nature</source><creator>Stukopin, V. A.</creator><creatorcontrib>Stukopin, V. A.</creatorcontrib><description>Drinfeld Yangian of a queer Lie superalgebra is defined as the quantization of a Lie bisuperelgebra of twisted polynomial currents. An analogue of the new system of generators of Drinfeld is being constructed. It is proved for the partial case of Lie superalgebra that this so defined Yangian and the Yangian, introduced earlier by M. Nazarov using the Faddeev–Reshetikhin–Takhtadzhjan approach, are isomorphic.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080220040241</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Geometry ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Polynomials ; Probability Theory and Stochastic Processes</subject><ispartof>Lobachevskii journal of mathematics, 2020-04, Vol.41 (4), p.728-741</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-ad7d21bd051e1b24554b32cf0867949db4a63709489e66274dbc260c202893eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Stukopin, V. A.</creatorcontrib><title>The Drinfeld Yangian of the Queer Lie Superalgebra. Defining Relations</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>Drinfeld Yangian of a queer Lie superalgebra is defined as the quantization of a Lie bisuperelgebra of twisted polynomial currents. An analogue of the new system of generators of Drinfeld is being constructed. It is proved for the partial case of Lie superalgebra that this so defined Yangian and the Yangian, introduced earlier by M. Nazarov using the Faddeev–Reshetikhin–Takhtadzhjan approach, are isomorphic.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Geometry</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><subject>Probability Theory and Stochastic Processes</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EEqXwA9gsMaecHcexR9TSglQJQcvAFNnJJaQKTrGTgX-PqyIxIKY73fveO-kRcs1gxlgqbjdM6wwUcA4ggAt2QiZMMZVoLflp3KOcHPRzchHCDiIopZyQ5fYd6cK3rsauom_GNa1xtK_pEO_PI6Kn6xbpZtyjN12D1psZXWDdutY19AU7M7S9C5fkrDZdwKufOSWvy_vt_CFZP60e53frpORSDYmp8oozW0HGkFkuskzYlJc1KJlroSsrjExz0EJplJLnorLRCCUHrnSKNp2Sm2Pu3vefI4ah2PWjd_FlwQVXoBXLRKTYkSp9H4LHutj79sP4r4JBcair-FNX9PCjJ0TWNeh_k_83fQPW0Wl9</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Stukopin, V. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200401</creationdate><title>The Drinfeld Yangian of the Queer Lie Superalgebra. Defining Relations</title><author>Stukopin, V. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-ad7d21bd051e1b24554b32cf0867949db4a63709489e66274dbc260c202893eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Geometry</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stukopin, V. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stukopin, V. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Drinfeld Yangian of the Queer Lie Superalgebra. Defining Relations</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>41</volume><issue>4</issue><spage>728</spage><epage>741</epage><pages>728-741</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>Drinfeld Yangian of a queer Lie superalgebra is defined as the quantization of a Lie bisuperelgebra of twisted polynomial currents. An analogue of the new system of generators of Drinfeld is being constructed. It is proved for the partial case of Lie superalgebra that this so defined Yangian and the Yangian, introduced earlier by M. Nazarov using the Faddeev–Reshetikhin–Takhtadzhjan approach, are isomorphic.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080220040241</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2020-04, Vol.41 (4), p.728-741
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_2428098154
source Springer Nature
subjects Algebra
Analysis
Geometry
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Polynomials
Probability Theory and Stochastic Processes
title The Drinfeld Yangian of the Queer Lie Superalgebra. Defining Relations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A04%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Drinfeld%20Yangian%20of%20the%20Queer%20Lie%20Superalgebra.%20Defining%20Relations&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Stukopin,%20V.%20A.&rft.date=2020-04-01&rft.volume=41&rft.issue=4&rft.spage=728&rft.epage=741&rft.pages=728-741&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080220040241&rft_dat=%3Cproquest_cross%3E2428098154%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-ad7d21bd051e1b24554b32cf0867949db4a63709489e66274dbc260c202893eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2428098154&rft_id=info:pmid/&rfr_iscdi=true