Loading…
The Drinfeld Yangian of the Queer Lie Superalgebra. Defining Relations
Drinfeld Yangian of a queer Lie superalgebra is defined as the quantization of a Lie bisuperelgebra of twisted polynomial currents. An analogue of the new system of generators of Drinfeld is being constructed. It is proved for the partial case of Lie superalgebra that this so defined Yangian and the...
Saved in:
Published in: | Lobachevskii journal of mathematics 2020-04, Vol.41 (4), p.728-741 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c268t-ad7d21bd051e1b24554b32cf0867949db4a63709489e66274dbc260c202893eb3 |
container_end_page | 741 |
container_issue | 4 |
container_start_page | 728 |
container_title | Lobachevskii journal of mathematics |
container_volume | 41 |
creator | Stukopin, V. A. |
description | Drinfeld Yangian of a queer Lie superalgebra is defined as the quantization of a Lie bisuperelgebra of twisted polynomial currents. An analogue of the new system of generators of Drinfeld is being constructed. It is proved for the partial case of Lie superalgebra
that this so defined Yangian and the Yangian, introduced earlier by M. Nazarov using the Faddeev–Reshetikhin–Takhtadzhjan approach, are isomorphic. |
doi_str_mv | 10.1134/S1995080220040241 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2428098154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2428098154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-ad7d21bd051e1b24554b32cf0867949db4a63709489e66274dbc260c202893eb3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqXwA9gsMaecHcexR9TSglQJQcvAFNnJJaQKTrGTgX-PqyIxIKY73fveO-kRcs1gxlgqbjdM6wwUcA4ggAt2QiZMMZVoLflp3KOcHPRzchHCDiIopZyQ5fYd6cK3rsauom_GNa1xtK_pEO_PI6Kn6xbpZtyjN12D1psZXWDdutY19AU7M7S9C5fkrDZdwKufOSWvy_vt_CFZP60e53frpORSDYmp8oozW0HGkFkuskzYlJc1KJlroSsrjExz0EJplJLnorLRCCUHrnSKNp2Sm2Pu3vefI4ah2PWjd_FlwQVXoBXLRKTYkSp9H4LHutj79sP4r4JBcair-FNX9PCjJ0TWNeh_k_83fQPW0Wl9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2428098154</pqid></control><display><type>article</type><title>The Drinfeld Yangian of the Queer Lie Superalgebra. Defining Relations</title><source>Springer Nature</source><creator>Stukopin, V. A.</creator><creatorcontrib>Stukopin, V. A.</creatorcontrib><description>Drinfeld Yangian of a queer Lie superalgebra is defined as the quantization of a Lie bisuperelgebra of twisted polynomial currents. An analogue of the new system of generators of Drinfeld is being constructed. It is proved for the partial case of Lie superalgebra
that this so defined Yangian and the Yangian, introduced earlier by M. Nazarov using the Faddeev–Reshetikhin–Takhtadzhjan approach, are isomorphic.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080220040241</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Geometry ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Polynomials ; Probability Theory and Stochastic Processes</subject><ispartof>Lobachevskii journal of mathematics, 2020-04, Vol.41 (4), p.728-741</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-ad7d21bd051e1b24554b32cf0867949db4a63709489e66274dbc260c202893eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Stukopin, V. A.</creatorcontrib><title>The Drinfeld Yangian of the Queer Lie Superalgebra. Defining Relations</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>Drinfeld Yangian of a queer Lie superalgebra is defined as the quantization of a Lie bisuperelgebra of twisted polynomial currents. An analogue of the new system of generators of Drinfeld is being constructed. It is proved for the partial case of Lie superalgebra
that this so defined Yangian and the Yangian, introduced earlier by M. Nazarov using the Faddeev–Reshetikhin–Takhtadzhjan approach, are isomorphic.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Geometry</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><subject>Probability Theory and Stochastic Processes</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EEqXwA9gsMaecHcexR9TSglQJQcvAFNnJJaQKTrGTgX-PqyIxIKY73fveO-kRcs1gxlgqbjdM6wwUcA4ggAt2QiZMMZVoLflp3KOcHPRzchHCDiIopZyQ5fYd6cK3rsauom_GNa1xtK_pEO_PI6Kn6xbpZtyjN12D1psZXWDdutY19AU7M7S9C5fkrDZdwKufOSWvy_vt_CFZP60e53frpORSDYmp8oozW0HGkFkuskzYlJc1KJlroSsrjExz0EJplJLnorLRCCUHrnSKNp2Sm2Pu3vefI4ah2PWjd_FlwQVXoBXLRKTYkSp9H4LHutj79sP4r4JBcair-FNX9PCjJ0TWNeh_k_83fQPW0Wl9</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Stukopin, V. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200401</creationdate><title>The Drinfeld Yangian of the Queer Lie Superalgebra. Defining Relations</title><author>Stukopin, V. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-ad7d21bd051e1b24554b32cf0867949db4a63709489e66274dbc260c202893eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Geometry</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stukopin, V. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stukopin, V. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Drinfeld Yangian of the Queer Lie Superalgebra. Defining Relations</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>41</volume><issue>4</issue><spage>728</spage><epage>741</epage><pages>728-741</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>Drinfeld Yangian of a queer Lie superalgebra is defined as the quantization of a Lie bisuperelgebra of twisted polynomial currents. An analogue of the new system of generators of Drinfeld is being constructed. It is proved for the partial case of Lie superalgebra
that this so defined Yangian and the Yangian, introduced earlier by M. Nazarov using the Faddeev–Reshetikhin–Takhtadzhjan approach, are isomorphic.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080220040241</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1995-0802 |
ispartof | Lobachevskii journal of mathematics, 2020-04, Vol.41 (4), p.728-741 |
issn | 1995-0802 1818-9962 |
language | eng |
recordid | cdi_proquest_journals_2428098154 |
source | Springer Nature |
subjects | Algebra Analysis Geometry Mathematical Logic and Foundations Mathematics Mathematics and Statistics Polynomials Probability Theory and Stochastic Processes |
title | The Drinfeld Yangian of the Queer Lie Superalgebra. Defining Relations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A04%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Drinfeld%20Yangian%20of%20the%20Queer%20Lie%20Superalgebra.%20Defining%20Relations&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Stukopin,%20V.%20A.&rft.date=2020-04-01&rft.volume=41&rft.issue=4&rft.spage=728&rft.epage=741&rft.pages=728-741&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080220040241&rft_dat=%3Cproquest_cross%3E2428098154%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-ad7d21bd051e1b24554b32cf0867949db4a63709489e66274dbc260c202893eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2428098154&rft_id=info:pmid/&rfr_iscdi=true |