Loading…

Spring Wheat Features in Response to Seed Treatment by Metal Nanoparticles

Application of advanced nanotechnologies is one of the main ways to increase crop yields in order to meet the growing global demand for food. This paper investigates the effect of Fe and Zn nanoparticles (NPs) on seed germination and growth of spring wheat seedlings ( T. aestivum L.) of the Zlata cu...

Full description

Saved in:
Bibliographic Details
Published in:Nanotechnologies in Russia 2019-11, Vol.14 (11-12), p.572-581
Main Authors: Davydova, N. V., Zamana, S. P., Krokhmal, I. I., Ryezepkin, A. M., Romanova, E. S., Olkhovskaya, I. P., Bogoslovskaya, O. A., Yablokov, A. G., Glushchenko, N. N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Application of advanced nanotechnologies is one of the main ways to increase crop yields in order to meet the growing global demand for food. This paper investigates the effect of Fe and Zn nanoparticles (NPs) on seed germination and growth of spring wheat seedlings ( T. aestivum L.) of the Zlata cultivar, as well as leaf anatomical changes, yield, grain quality, and microelement composition of the soil after harvesting. It was found that presowing seed treatment by a composition of Fe NPs at a concentration of 10 –5 % and Zn NPs at a concentration of 10 –4 % contributed to a 27% increase in the seed germination energy index and root weight compared to the control. The highest plant height (by 8.2%) and green mass (by 8.5%) were observed in the experimental variant with presowing seed treatment by Zn NPs. The leaf area after presowing seed treatment by iron and zinc NPs increased by 18.2 and 33%, respectively. The highest index of specific leaf area (28% higher than the control), calculated as the ratio of leaf area to green mass, was observed in wheat leaves after seed treatment by Zn NPs. Presowing seed treatment by Fe and Zn NPs separately or in combination led to changes in anatomical parameters (leaf, mesophyll, and epidermis thickness, and conducting bundle area), which were higher than those in the control group of plants whose seeds were treated with water and lower than those in leaves of the plants whose seeds were treated with polymers. Evaluation of the wheat yield structure and grain quality after presowing seed treatment by the composition of metal NPs showed a greater thousand grain weight (1.9 g more than the control) and a higher grains/ear ratio. Presowing treatment of spring wheat seeds by Fe : Zn NPs contributed to higher content of mobile forms of iron, zinc, copper, and phosphorus in the soil after harvest.
ISSN:1995-0780
1995-0799
DOI:10.1134/S1995078019060041