Loading…
Study of Rock-Cutting Process by Disc Cutters in Mixed Ground based on Three-dimensional Particle Flow Model
With the increasing number of long tunnelling and urban subway constructions, mixed-face ground conditions are frequently encountered. Rock fragmentation mechanism under disc cutter cutting in TBM tunneling through the mixed-face ground is complex and can lead to engineering difficulties. During TBM...
Saved in:
Published in: | Rock mechanics and rock engineering 2020-08, Vol.53 (8), p.3485-3506 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With the increasing number of long tunnelling and urban subway constructions, mixed-face ground conditions are frequently encountered. Rock fragmentation mechanism under disc cutter cutting in TBM tunneling through the mixed-face ground is complex and can lead to engineering difficulties. During TBM tunneling in mixed-face ground with soft rock in upper layer and hard rock in the lower layer, reduction of the advance rate and reduced rotational speed of cutter head occur compared with homogeneous ground. As a result, the muck in the working chamber cannot be replaced timely, leading to the formation of mud cake. Additionally, the disc cutters cannot rotate normally and are worn eccentrically and severely. Finally, the cutters collide with hard rock periodically at the interface between soft and hard rock, thus being subject to a huge impact load, even overload on some cutters, resulting in chipping of the cutter ring and damage to the cutter holder. This paper presents numerical analysis of the disc cutter cutting process considering the difference of rock-cutting behaviors of disc cutters in the mixed-face ground with the aid of PFC3D code. Based on the forces imposed on the disc cutter and rock crack propagation, TBM tunneling in the mixed-face ground is investigated. The decrease of the mean rolling force of the disc cutter causes rotation hindering in the disc cutter in soft rock stratum leading to flat cutter wear. The gap of the normal force between the soft rock and hard rock generates the overturning moment of the cutter head, which causes the eccentricity and vibration of the cutter head. |
---|---|
ISSN: | 0723-2632 1434-453X |
DOI: | 10.1007/s00603-020-02118-y |