Loading…
A Robot Architecture for Outdoor Competitions
Autonomous navigation in unstructured environments is a common topic of research, being motivated by robotic competitions and involving several sets of skills. We present a modular architecture to integrate different components for path planning and navigation of an autonomous mobile robot. This arc...
Saved in:
Published in: | Journal of intelligent & robotic systems 2020-09, Vol.99 (3-4), p.629-646 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c402t-2da3563f2f00ac1e77969f584aea4ae5b4fa23441a6ce070a25dd21374c470cc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c402t-2da3563f2f00ac1e77969f584aea4ae5b4fa23441a6ce070a25dd21374c470cc3 |
container_end_page | 646 |
container_issue | 3-4 |
container_start_page | 629 |
container_title | Journal of intelligent & robotic systems |
container_volume | 99 |
creator | de Oliveira, Rodrigo W. S. M. Bauchspiess, Ricardo Porto, Letícia H. S. de Brito, Camila G. Figueredo, Luis F. C. Borges, Geovany A. Ramos, Guilherme N. |
description | Autonomous navigation in unstructured environments is a common topic of research, being motivated by robotic competitions and involving several sets of skills. We present a modular architecture to integrate different components for path planning and navigation of an autonomous mobile robot. This architecture was developed in order to participate in the RoboMagellan competition hosted by RoboGames. It is divided in the organizational, functional and executive levels in order to secure that the developed system has programmability, autonomy, adaptability and extensibility. Global and local localization strategies use unscented and extended Kalman filters (UKF and EKF) to fuse data from a Global Positioning System (GPS) receiver, inertial measurement unit (IMU), odometry and camera. Movement is controlled by a model reference adaptive controller (MRAC) and a proportional controller. To avoid obstacles a deformable virtual zone (DVZ) approach is used. The architecture was tested in simulated environments and with a real robot, providing a very flexible approach to testing different configurations. |
doi_str_mv | 10.1007/s10846-019-01140-9 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2428284048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A724156913</galeid><sourcerecordid>A724156913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-2da3563f2f00ac1e77969f584aea4ae5b4fa23441a6ce070a25dd21374c470cc3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC59TJv83muBS1QqEgeg5pNqlb2k1Nsge_vdEVvMnwGBjeb2Z4CN0SWBAAeZ8INLzGQFQR4YDVGZoRIRkGDuoczUBRgoGq-hJdpbQHANUINUO4rV7CNuSqjfa9z87mMbrKh1htxtyF0pfheHK5z30Y0jW68OaQ3M1vn6O3x4fX5QqvN0_Py3aNLQeaMe0MEzXz1AMYS5yUqlZeNNw4UyS23BvKOCemtg4kGCq6jhImueUSrGVzdDftPcXwMbqU9T6McSgnNeW0oQ0H3hTXYnLtzMHpfvAhR2NLde7Y2zA435d5KyknolaEFYBOgI0hpei8PsX-aOKnJqC_c9RTjrrkqH9y1KpAbIJSMQ87F_9--Yf6AqhPc6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2428284048</pqid></control><display><type>article</type><title>A Robot Architecture for Outdoor Competitions</title><source>Springer Link</source><creator>de Oliveira, Rodrigo W. S. M. ; Bauchspiess, Ricardo ; Porto, Letícia H. S. ; de Brito, Camila G. ; Figueredo, Luis F. C. ; Borges, Geovany A. ; Ramos, Guilherme N.</creator><creatorcontrib>de Oliveira, Rodrigo W. S. M. ; Bauchspiess, Ricardo ; Porto, Letícia H. S. ; de Brito, Camila G. ; Figueredo, Luis F. C. ; Borges, Geovany A. ; Ramos, Guilherme N.</creatorcontrib><description>Autonomous navigation in unstructured environments is a common topic of research, being motivated by robotic competitions and involving several sets of skills. We present a modular architecture to integrate different components for path planning and navigation of an autonomous mobile robot. This architecture was developed in order to participate in the RoboMagellan competition hosted by RoboGames. It is divided in the organizational, functional and executive levels in order to secure that the developed system has programmability, autonomy, adaptability and extensibility. Global and local localization strategies use unscented and extended Kalman filters (UKF and EKF) to fuse data from a Global Positioning System (GPS) receiver, inertial measurement unit (IMU), odometry and camera. Movement is controlled by a model reference adaptive controller (MRAC) and a proportional controller. To avoid obstacles a deformable virtual zone (DVZ) approach is used. The architecture was tested in simulated environments and with a real robot, providing a very flexible approach to testing different configurations.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-019-01140-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Architecture ; Artificial Intelligence ; Autonomous navigation ; Autonomy ; Computer simulation ; Control ; Controllers ; Electrical Engineering ; Engineering ; Extended Kalman filter ; Formability ; Global positioning systems ; GPS ; Inertial platforms ; Mechanical Engineering ; Mechatronics ; Model reference adaptive control ; Path planning ; Robotics ; Robots</subject><ispartof>Journal of intelligent & robotic systems, 2020-09, Vol.99 (3-4), p.629-646</ispartof><rights>Springer Nature B.V. 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-2da3563f2f00ac1e77969f584aea4ae5b4fa23441a6ce070a25dd21374c470cc3</citedby><cites>FETCH-LOGICAL-c402t-2da3563f2f00ac1e77969f584aea4ae5b4fa23441a6ce070a25dd21374c470cc3</cites><orcidid>0000-0001-8207-0624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>de Oliveira, Rodrigo W. S. M.</creatorcontrib><creatorcontrib>Bauchspiess, Ricardo</creatorcontrib><creatorcontrib>Porto, Letícia H. S.</creatorcontrib><creatorcontrib>de Brito, Camila G.</creatorcontrib><creatorcontrib>Figueredo, Luis F. C.</creatorcontrib><creatorcontrib>Borges, Geovany A.</creatorcontrib><creatorcontrib>Ramos, Guilherme N.</creatorcontrib><title>A Robot Architecture for Outdoor Competitions</title><title>Journal of intelligent & robotic systems</title><addtitle>J Intell Robot Syst</addtitle><description>Autonomous navigation in unstructured environments is a common topic of research, being motivated by robotic competitions and involving several sets of skills. We present a modular architecture to integrate different components for path planning and navigation of an autonomous mobile robot. This architecture was developed in order to participate in the RoboMagellan competition hosted by RoboGames. It is divided in the organizational, functional and executive levels in order to secure that the developed system has programmability, autonomy, adaptability and extensibility. Global and local localization strategies use unscented and extended Kalman filters (UKF and EKF) to fuse data from a Global Positioning System (GPS) receiver, inertial measurement unit (IMU), odometry and camera. Movement is controlled by a model reference adaptive controller (MRAC) and a proportional controller. To avoid obstacles a deformable virtual zone (DVZ) approach is used. The architecture was tested in simulated environments and with a real robot, providing a very flexible approach to testing different configurations.</description><subject>Architecture</subject><subject>Artificial Intelligence</subject><subject>Autonomous navigation</subject><subject>Autonomy</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Controllers</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Extended Kalman filter</subject><subject>Formability</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Inertial platforms</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Model reference adaptive control</subject><subject>Path planning</subject><subject>Robotics</subject><subject>Robots</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwNOC59TJv83muBS1QqEgeg5pNqlb2k1Nsge_vdEVvMnwGBjeb2Z4CN0SWBAAeZ8INLzGQFQR4YDVGZoRIRkGDuoczUBRgoGq-hJdpbQHANUINUO4rV7CNuSqjfa9z87mMbrKh1htxtyF0pfheHK5z30Y0jW68OaQ3M1vn6O3x4fX5QqvN0_Py3aNLQeaMe0MEzXz1AMYS5yUqlZeNNw4UyS23BvKOCemtg4kGCq6jhImueUSrGVzdDftPcXwMbqU9T6McSgnNeW0oQ0H3hTXYnLtzMHpfvAhR2NLde7Y2zA435d5KyknolaEFYBOgI0hpei8PsX-aOKnJqC_c9RTjrrkqH9y1KpAbIJSMQ87F_9--Yf6AqhPc6g</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>de Oliveira, Rodrigo W. S. M.</creator><creator>Bauchspiess, Ricardo</creator><creator>Porto, Letícia H. S.</creator><creator>de Brito, Camila G.</creator><creator>Figueredo, Luis F. C.</creator><creator>Borges, Geovany A.</creator><creator>Ramos, Guilherme N.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8207-0624</orcidid></search><sort><creationdate>20200901</creationdate><title>A Robot Architecture for Outdoor Competitions</title><author>de Oliveira, Rodrigo W. S. M. ; Bauchspiess, Ricardo ; Porto, Letícia H. S. ; de Brito, Camila G. ; Figueredo, Luis F. C. ; Borges, Geovany A. ; Ramos, Guilherme N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-2da3563f2f00ac1e77969f584aea4ae5b4fa23441a6ce070a25dd21374c470cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Architecture</topic><topic>Artificial Intelligence</topic><topic>Autonomous navigation</topic><topic>Autonomy</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Controllers</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Extended Kalman filter</topic><topic>Formability</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Inertial platforms</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Model reference adaptive control</topic><topic>Path planning</topic><topic>Robotics</topic><topic>Robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Oliveira, Rodrigo W. S. M.</creatorcontrib><creatorcontrib>Bauchspiess, Ricardo</creatorcontrib><creatorcontrib>Porto, Letícia H. S.</creatorcontrib><creatorcontrib>de Brito, Camila G.</creatorcontrib><creatorcontrib>Figueredo, Luis F. C.</creatorcontrib><creatorcontrib>Borges, Geovany A.</creatorcontrib><creatorcontrib>Ramos, Guilherme N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent & robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Oliveira, Rodrigo W. S. M.</au><au>Bauchspiess, Ricardo</au><au>Porto, Letícia H. S.</au><au>de Brito, Camila G.</au><au>Figueredo, Luis F. C.</au><au>Borges, Geovany A.</au><au>Ramos, Guilherme N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Robot Architecture for Outdoor Competitions</atitle><jtitle>Journal of intelligent & robotic systems</jtitle><stitle>J Intell Robot Syst</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>99</volume><issue>3-4</issue><spage>629</spage><epage>646</epage><pages>629-646</pages><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>Autonomous navigation in unstructured environments is a common topic of research, being motivated by robotic competitions and involving several sets of skills. We present a modular architecture to integrate different components for path planning and navigation of an autonomous mobile robot. This architecture was developed in order to participate in the RoboMagellan competition hosted by RoboGames. It is divided in the organizational, functional and executive levels in order to secure that the developed system has programmability, autonomy, adaptability and extensibility. Global and local localization strategies use unscented and extended Kalman filters (UKF and EKF) to fuse data from a Global Positioning System (GPS) receiver, inertial measurement unit (IMU), odometry and camera. Movement is controlled by a model reference adaptive controller (MRAC) and a proportional controller. To avoid obstacles a deformable virtual zone (DVZ) approach is used. The architecture was tested in simulated environments and with a real robot, providing a very flexible approach to testing different configurations.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10846-019-01140-9</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8207-0624</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-0296 |
ispartof | Journal of intelligent & robotic systems, 2020-09, Vol.99 (3-4), p.629-646 |
issn | 0921-0296 1573-0409 |
language | eng |
recordid | cdi_proquest_journals_2428284048 |
source | Springer Link |
subjects | Architecture Artificial Intelligence Autonomous navigation Autonomy Computer simulation Control Controllers Electrical Engineering Engineering Extended Kalman filter Formability Global positioning systems GPS Inertial platforms Mechanical Engineering Mechatronics Model reference adaptive control Path planning Robotics Robots |
title | A Robot Architecture for Outdoor Competitions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A28%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Robot%20Architecture%20for%20Outdoor%20Competitions&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=de%20Oliveira,%20Rodrigo%20W.%20S.%20M.&rft.date=2020-09-01&rft.volume=99&rft.issue=3-4&rft.spage=629&rft.epage=646&rft.pages=629-646&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-019-01140-9&rft_dat=%3Cgale_proqu%3EA724156913%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-2da3563f2f00ac1e77969f584aea4ae5b4fa23441a6ce070a25dd21374c470cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2428284048&rft_id=info:pmid/&rft_galeid=A724156913&rfr_iscdi=true |