Loading…

A Robot Architecture for Outdoor Competitions

Autonomous navigation in unstructured environments is a common topic of research, being motivated by robotic competitions and involving several sets of skills. We present a modular architecture to integrate different components for path planning and navigation of an autonomous mobile robot. This arc...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent & robotic systems 2020-09, Vol.99 (3-4), p.629-646
Main Authors: de Oliveira, Rodrigo W. S. M., Bauchspiess, Ricardo, Porto, Letícia H. S., de Brito, Camila G., Figueredo, Luis F. C., Borges, Geovany A., Ramos, Guilherme N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-2da3563f2f00ac1e77969f584aea4ae5b4fa23441a6ce070a25dd21374c470cc3
cites cdi_FETCH-LOGICAL-c402t-2da3563f2f00ac1e77969f584aea4ae5b4fa23441a6ce070a25dd21374c470cc3
container_end_page 646
container_issue 3-4
container_start_page 629
container_title Journal of intelligent & robotic systems
container_volume 99
creator de Oliveira, Rodrigo W. S. M.
Bauchspiess, Ricardo
Porto, Letícia H. S.
de Brito, Camila G.
Figueredo, Luis F. C.
Borges, Geovany A.
Ramos, Guilherme N.
description Autonomous navigation in unstructured environments is a common topic of research, being motivated by robotic competitions and involving several sets of skills. We present a modular architecture to integrate different components for path planning and navigation of an autonomous mobile robot. This architecture was developed in order to participate in the RoboMagellan competition hosted by RoboGames. It is divided in the organizational, functional and executive levels in order to secure that the developed system has programmability, autonomy, adaptability and extensibility. Global and local localization strategies use unscented and extended Kalman filters (UKF and EKF) to fuse data from a Global Positioning System (GPS) receiver, inertial measurement unit (IMU), odometry and camera. Movement is controlled by a model reference adaptive controller (MRAC) and a proportional controller. To avoid obstacles a deformable virtual zone (DVZ) approach is used. The architecture was tested in simulated environments and with a real robot, providing a very flexible approach to testing different configurations.
doi_str_mv 10.1007/s10846-019-01140-9
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2428284048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A724156913</galeid><sourcerecordid>A724156913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-2da3563f2f00ac1e77969f584aea4ae5b4fa23441a6ce070a25dd21374c470cc3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC59TJv83muBS1QqEgeg5pNqlb2k1Nsge_vdEVvMnwGBjeb2Z4CN0SWBAAeZ8INLzGQFQR4YDVGZoRIRkGDuoczUBRgoGq-hJdpbQHANUINUO4rV7CNuSqjfa9z87mMbrKh1htxtyF0pfheHK5z30Y0jW68OaQ3M1vn6O3x4fX5QqvN0_Py3aNLQeaMe0MEzXz1AMYS5yUqlZeNNw4UyS23BvKOCemtg4kGCq6jhImueUSrGVzdDftPcXwMbqU9T6McSgnNeW0oQ0H3hTXYnLtzMHpfvAhR2NLde7Y2zA435d5KyknolaEFYBOgI0hpei8PsX-aOKnJqC_c9RTjrrkqH9y1KpAbIJSMQ87F_9--Yf6AqhPc6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2428284048</pqid></control><display><type>article</type><title>A Robot Architecture for Outdoor Competitions</title><source>Springer Link</source><creator>de Oliveira, Rodrigo W. S. M. ; Bauchspiess, Ricardo ; Porto, Letícia H. S. ; de Brito, Camila G. ; Figueredo, Luis F. C. ; Borges, Geovany A. ; Ramos, Guilherme N.</creator><creatorcontrib>de Oliveira, Rodrigo W. S. M. ; Bauchspiess, Ricardo ; Porto, Letícia H. S. ; de Brito, Camila G. ; Figueredo, Luis F. C. ; Borges, Geovany A. ; Ramos, Guilherme N.</creatorcontrib><description>Autonomous navigation in unstructured environments is a common topic of research, being motivated by robotic competitions and involving several sets of skills. We present a modular architecture to integrate different components for path planning and navigation of an autonomous mobile robot. This architecture was developed in order to participate in the RoboMagellan competition hosted by RoboGames. It is divided in the organizational, functional and executive levels in order to secure that the developed system has programmability, autonomy, adaptability and extensibility. Global and local localization strategies use unscented and extended Kalman filters (UKF and EKF) to fuse data from a Global Positioning System (GPS) receiver, inertial measurement unit (IMU), odometry and camera. Movement is controlled by a model reference adaptive controller (MRAC) and a proportional controller. To avoid obstacles a deformable virtual zone (DVZ) approach is used. The architecture was tested in simulated environments and with a real robot, providing a very flexible approach to testing different configurations.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-019-01140-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Architecture ; Artificial Intelligence ; Autonomous navigation ; Autonomy ; Computer simulation ; Control ; Controllers ; Electrical Engineering ; Engineering ; Extended Kalman filter ; Formability ; Global positioning systems ; GPS ; Inertial platforms ; Mechanical Engineering ; Mechatronics ; Model reference adaptive control ; Path planning ; Robotics ; Robots</subject><ispartof>Journal of intelligent &amp; robotic systems, 2020-09, Vol.99 (3-4), p.629-646</ispartof><rights>Springer Nature B.V. 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-2da3563f2f00ac1e77969f584aea4ae5b4fa23441a6ce070a25dd21374c470cc3</citedby><cites>FETCH-LOGICAL-c402t-2da3563f2f00ac1e77969f584aea4ae5b4fa23441a6ce070a25dd21374c470cc3</cites><orcidid>0000-0001-8207-0624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>de Oliveira, Rodrigo W. S. M.</creatorcontrib><creatorcontrib>Bauchspiess, Ricardo</creatorcontrib><creatorcontrib>Porto, Letícia H. S.</creatorcontrib><creatorcontrib>de Brito, Camila G.</creatorcontrib><creatorcontrib>Figueredo, Luis F. C.</creatorcontrib><creatorcontrib>Borges, Geovany A.</creatorcontrib><creatorcontrib>Ramos, Guilherme N.</creatorcontrib><title>A Robot Architecture for Outdoor Competitions</title><title>Journal of intelligent &amp; robotic systems</title><addtitle>J Intell Robot Syst</addtitle><description>Autonomous navigation in unstructured environments is a common topic of research, being motivated by robotic competitions and involving several sets of skills. We present a modular architecture to integrate different components for path planning and navigation of an autonomous mobile robot. This architecture was developed in order to participate in the RoboMagellan competition hosted by RoboGames. It is divided in the organizational, functional and executive levels in order to secure that the developed system has programmability, autonomy, adaptability and extensibility. Global and local localization strategies use unscented and extended Kalman filters (UKF and EKF) to fuse data from a Global Positioning System (GPS) receiver, inertial measurement unit (IMU), odometry and camera. Movement is controlled by a model reference adaptive controller (MRAC) and a proportional controller. To avoid obstacles a deformable virtual zone (DVZ) approach is used. The architecture was tested in simulated environments and with a real robot, providing a very flexible approach to testing different configurations.</description><subject>Architecture</subject><subject>Artificial Intelligence</subject><subject>Autonomous navigation</subject><subject>Autonomy</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Controllers</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Extended Kalman filter</subject><subject>Formability</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Inertial platforms</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Model reference adaptive control</subject><subject>Path planning</subject><subject>Robotics</subject><subject>Robots</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwNOC59TJv83muBS1QqEgeg5pNqlb2k1Nsge_vdEVvMnwGBjeb2Z4CN0SWBAAeZ8INLzGQFQR4YDVGZoRIRkGDuoczUBRgoGq-hJdpbQHANUINUO4rV7CNuSqjfa9z87mMbrKh1htxtyF0pfheHK5z30Y0jW68OaQ3M1vn6O3x4fX5QqvN0_Py3aNLQeaMe0MEzXz1AMYS5yUqlZeNNw4UyS23BvKOCemtg4kGCq6jhImueUSrGVzdDftPcXwMbqU9T6McSgnNeW0oQ0H3hTXYnLtzMHpfvAhR2NLde7Y2zA435d5KyknolaEFYBOgI0hpei8PsX-aOKnJqC_c9RTjrrkqH9y1KpAbIJSMQ87F_9--Yf6AqhPc6g</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>de Oliveira, Rodrigo W. S. M.</creator><creator>Bauchspiess, Ricardo</creator><creator>Porto, Letícia H. S.</creator><creator>de Brito, Camila G.</creator><creator>Figueredo, Luis F. C.</creator><creator>Borges, Geovany A.</creator><creator>Ramos, Guilherme N.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8207-0624</orcidid></search><sort><creationdate>20200901</creationdate><title>A Robot Architecture for Outdoor Competitions</title><author>de Oliveira, Rodrigo W. S. M. ; Bauchspiess, Ricardo ; Porto, Letícia H. S. ; de Brito, Camila G. ; Figueredo, Luis F. C. ; Borges, Geovany A. ; Ramos, Guilherme N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-2da3563f2f00ac1e77969f584aea4ae5b4fa23441a6ce070a25dd21374c470cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Architecture</topic><topic>Artificial Intelligence</topic><topic>Autonomous navigation</topic><topic>Autonomy</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Controllers</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Extended Kalman filter</topic><topic>Formability</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Inertial platforms</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Model reference adaptive control</topic><topic>Path planning</topic><topic>Robotics</topic><topic>Robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Oliveira, Rodrigo W. S. M.</creatorcontrib><creatorcontrib>Bauchspiess, Ricardo</creatorcontrib><creatorcontrib>Porto, Letícia H. S.</creatorcontrib><creatorcontrib>de Brito, Camila G.</creatorcontrib><creatorcontrib>Figueredo, Luis F. C.</creatorcontrib><creatorcontrib>Borges, Geovany A.</creatorcontrib><creatorcontrib>Ramos, Guilherme N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent &amp; robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Oliveira, Rodrigo W. S. M.</au><au>Bauchspiess, Ricardo</au><au>Porto, Letícia H. S.</au><au>de Brito, Camila G.</au><au>Figueredo, Luis F. C.</au><au>Borges, Geovany A.</au><au>Ramos, Guilherme N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Robot Architecture for Outdoor Competitions</atitle><jtitle>Journal of intelligent &amp; robotic systems</jtitle><stitle>J Intell Robot Syst</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>99</volume><issue>3-4</issue><spage>629</spage><epage>646</epage><pages>629-646</pages><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>Autonomous navigation in unstructured environments is a common topic of research, being motivated by robotic competitions and involving several sets of skills. We present a modular architecture to integrate different components for path planning and navigation of an autonomous mobile robot. This architecture was developed in order to participate in the RoboMagellan competition hosted by RoboGames. It is divided in the organizational, functional and executive levels in order to secure that the developed system has programmability, autonomy, adaptability and extensibility. Global and local localization strategies use unscented and extended Kalman filters (UKF and EKF) to fuse data from a Global Positioning System (GPS) receiver, inertial measurement unit (IMU), odometry and camera. Movement is controlled by a model reference adaptive controller (MRAC) and a proportional controller. To avoid obstacles a deformable virtual zone (DVZ) approach is used. The architecture was tested in simulated environments and with a real robot, providing a very flexible approach to testing different configurations.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10846-019-01140-9</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8207-0624</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0921-0296
ispartof Journal of intelligent & robotic systems, 2020-09, Vol.99 (3-4), p.629-646
issn 0921-0296
1573-0409
language eng
recordid cdi_proquest_journals_2428284048
source Springer Link
subjects Architecture
Artificial Intelligence
Autonomous navigation
Autonomy
Computer simulation
Control
Controllers
Electrical Engineering
Engineering
Extended Kalman filter
Formability
Global positioning systems
GPS
Inertial platforms
Mechanical Engineering
Mechatronics
Model reference adaptive control
Path planning
Robotics
Robots
title A Robot Architecture for Outdoor Competitions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A28%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Robot%20Architecture%20for%20Outdoor%20Competitions&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=de%20Oliveira,%20Rodrigo%20W.%20S.%20M.&rft.date=2020-09-01&rft.volume=99&rft.issue=3-4&rft.spage=629&rft.epage=646&rft.pages=629-646&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-019-01140-9&rft_dat=%3Cgale_proqu%3EA724156913%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-2da3563f2f00ac1e77969f584aea4ae5b4fa23441a6ce070a25dd21374c470cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2428284048&rft_id=info:pmid/&rft_galeid=A724156913&rfr_iscdi=true