Loading…

Scalable molecular dynamics on CPU and GPU architectures withNAMD

NAMD is a molecular dynamics program designed for high-performance simulations of verylarge biological objects on CPU- and GPU-based architectures. NAMD offers scalableperformance on petascale parallel supercomputers consisting of hundreds of thousands ofcores, as well as on inexpensive commodity cl...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2020-07, Vol.153 (4)
Main Authors: Hardy, David J, Maia, Julio D, Stone, John E, Ribeiro, João V, Bernardi, Rafael C, Fiorin Giacomo, Hénin Jérôme, McGreevy, Ryan, Radak, Brian K, Skeel, Robert D, Singharoy Abhishek, Wang, Yi, Roux Benoît
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 4
container_start_page
container_title The Journal of chemical physics
container_volume 153
creator Hardy, David J
Maia, Julio D
Stone, John E
Ribeiro, João V
Bernardi, Rafael C
Fiorin Giacomo
Hénin Jérôme
McGreevy, Ryan
Radak, Brian K
Skeel, Robert D
Singharoy Abhishek
Wang, Yi
Roux Benoît
description NAMD is a molecular dynamics program designed for high-performance simulations of verylarge biological objects on CPU- and GPU-based architectures. NAMD offers scalableperformance on petascale parallel supercomputers consisting of hundreds of thousands ofcores, as well as on inexpensive commodity clusters commonly found in academicenvironments. It is written in C++ and leans on Charm++ parallel objects for optimalperformance on low-latency architectures. NAMD is a versatile, multipurpose code thatgathers state-of-the-art algorithms to carry out simulations in apt thermodynamicensembles, using the widely popular CHARMM, AMBER, OPLS, and GROMOS biomolecular forcefields. Here, we review the main features of NAMD that allow both equilibrium andenhanced-sampling molecular dynamics simulations with numerical efficiency. We describethe underlying concepts utilized by NAMD and their implementation, most notably forhandling long-range electrostatics; controlling the temperature, pressure, and pH;applying external potentials on tailored grids; leveraging massively parallel resources inmultiple-copy simulations; and hybrid quantum-mechanical/molecular-mechanicaldescriptions. We detail the variety of options offered by NAMD for enhanced-samplingsimulations aimed at determining free-energy differences of either alchemical orgeometrical transformations and outline their applicability to specific problems. Last, wediscuss the roadmap for the development of NAMD and our current efforts toward achievingoptimal performance on GPU-based architectures, for pushing back the limitations that haveprevented biologically realistic billion-atom objects to be fruitfully simulated, and formaking large-scale simulations less expensive and easier to set up, run, and analyze. NAMDis distributed free of charge with its source code at www.ks.uiuc.edu.
doi_str_mv 10.1063/5.0014475
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2428667187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2428667187</sourcerecordid><originalsourceid>FETCH-proquest_journals_24286671873</originalsourceid><addsrcrecordid>eNqNyrsOgjAYQOHGaCJeBt-giTP4l0sLI8HbojFRZ1JLDZAC2kKMby8mPoDTN5yD0IKAQ4B6q8ABIL7PggGyCISRzWgEQ2QBuMSOKNAxmhhTQn8x17dQfBZc8ZuSuGqUFJ3iGmfvmleFMLipcXK6Yl5nePdVi7xopWg7LQ1-FW1-jA_rGRrduTJy_nOKltvNJdnbD908O2natGw6XfcpdX03pJSRkHn_XR-7Fj00</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2428667187</pqid></control><display><type>article</type><title>Scalable molecular dynamics on CPU and GPU architectures withNAMD</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Hardy, David J ; Maia, Julio D ; Stone, John E ; Ribeiro, João V ; Bernardi, Rafael C ; Fiorin Giacomo ; Hénin Jérôme ; McGreevy, Ryan ; Radak, Brian K ; Skeel, Robert D ; Singharoy Abhishek ; Wang, Yi ; Roux Benoît</creator><creatorcontrib>Hardy, David J ; Maia, Julio D ; Stone, John E ; Ribeiro, João V ; Bernardi, Rafael C ; Fiorin Giacomo ; Hénin Jérôme ; McGreevy, Ryan ; Radak, Brian K ; Skeel, Robert D ; Singharoy Abhishek ; Wang, Yi ; Roux Benoît</creatorcontrib><description>NAMD is a molecular dynamics program designed for high-performance simulations of verylarge biological objects on CPU- and GPU-based architectures. NAMD offers scalableperformance on petascale parallel supercomputers consisting of hundreds of thousands ofcores, as well as on inexpensive commodity clusters commonly found in academicenvironments. It is written in C++ and leans on Charm++ parallel objects for optimalperformance on low-latency architectures. NAMD is a versatile, multipurpose code thatgathers state-of-the-art algorithms to carry out simulations in apt thermodynamicensembles, using the widely popular CHARMM, AMBER, OPLS, and GROMOS biomolecular forcefields. Here, we review the main features of NAMD that allow both equilibrium andenhanced-sampling molecular dynamics simulations with numerical efficiency. We describethe underlying concepts utilized by NAMD and their implementation, most notably forhandling long-range electrostatics; controlling the temperature, pressure, and pH;applying external potentials on tailored grids; leveraging massively parallel resources inmultiple-copy simulations; and hybrid quantum-mechanical/molecular-mechanicaldescriptions. We detail the variety of options offered by NAMD for enhanced-samplingsimulations aimed at determining free-energy differences of either alchemical orgeometrical transformations and outline their applicability to specific problems. Last, wediscuss the roadmap for the development of NAMD and our current efforts toward achievingoptimal performance on GPU-based architectures, for pushing back the limitations that haveprevented biologically realistic billion-atom objects to be fruitfully simulated, and formaking large-scale simulations less expensive and easier to set up, run, and analyze. NAMDis distributed free of charge with its source code at www.ks.uiuc.edu.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0014475</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Charge distribution ; Computer simulation ; Electrostatics ; External pressure ; Molecular dynamics ; Sampling ; Simulation ; Source code ; Supercomputers</subject><ispartof>The Journal of chemical physics, 2020-07, Vol.153 (4)</ispartof><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,782,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Hardy, David J</creatorcontrib><creatorcontrib>Maia, Julio D</creatorcontrib><creatorcontrib>Stone, John E</creatorcontrib><creatorcontrib>Ribeiro, João V</creatorcontrib><creatorcontrib>Bernardi, Rafael C</creatorcontrib><creatorcontrib>Fiorin Giacomo</creatorcontrib><creatorcontrib>Hénin Jérôme</creatorcontrib><creatorcontrib>McGreevy, Ryan</creatorcontrib><creatorcontrib>Radak, Brian K</creatorcontrib><creatorcontrib>Skeel, Robert D</creatorcontrib><creatorcontrib>Singharoy Abhishek</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Roux Benoît</creatorcontrib><title>Scalable molecular dynamics on CPU and GPU architectures withNAMD</title><title>The Journal of chemical physics</title><description>NAMD is a molecular dynamics program designed for high-performance simulations of verylarge biological objects on CPU- and GPU-based architectures. NAMD offers scalableperformance on petascale parallel supercomputers consisting of hundreds of thousands ofcores, as well as on inexpensive commodity clusters commonly found in academicenvironments. It is written in C++ and leans on Charm++ parallel objects for optimalperformance on low-latency architectures. NAMD is a versatile, multipurpose code thatgathers state-of-the-art algorithms to carry out simulations in apt thermodynamicensembles, using the widely popular CHARMM, AMBER, OPLS, and GROMOS biomolecular forcefields. Here, we review the main features of NAMD that allow both equilibrium andenhanced-sampling molecular dynamics simulations with numerical efficiency. We describethe underlying concepts utilized by NAMD and their implementation, most notably forhandling long-range electrostatics; controlling the temperature, pressure, and pH;applying external potentials on tailored grids; leveraging massively parallel resources inmultiple-copy simulations; and hybrid quantum-mechanical/molecular-mechanicaldescriptions. We detail the variety of options offered by NAMD for enhanced-samplingsimulations aimed at determining free-energy differences of either alchemical orgeometrical transformations and outline their applicability to specific problems. Last, wediscuss the roadmap for the development of NAMD and our current efforts toward achievingoptimal performance on GPU-based architectures, for pushing back the limitations that haveprevented biologically realistic billion-atom objects to be fruitfully simulated, and formaking large-scale simulations less expensive and easier to set up, run, and analyze. NAMDis distributed free of charge with its source code at www.ks.uiuc.edu.</description><subject>Algorithms</subject><subject>Charge distribution</subject><subject>Computer simulation</subject><subject>Electrostatics</subject><subject>External pressure</subject><subject>Molecular dynamics</subject><subject>Sampling</subject><subject>Simulation</subject><subject>Source code</subject><subject>Supercomputers</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNyrsOgjAYQOHGaCJeBt-giTP4l0sLI8HbojFRZ1JLDZAC2kKMby8mPoDTN5yD0IKAQ4B6q8ABIL7PggGyCISRzWgEQ2QBuMSOKNAxmhhTQn8x17dQfBZc8ZuSuGqUFJ3iGmfvmleFMLipcXK6Yl5nePdVi7xopWg7LQ1-FW1-jA_rGRrduTJy_nOKltvNJdnbD908O2natGw6XfcpdX03pJSRkHn_XR-7Fj00</recordid><startdate>20200728</startdate><enddate>20200728</enddate><creator>Hardy, David J</creator><creator>Maia, Julio D</creator><creator>Stone, John E</creator><creator>Ribeiro, João V</creator><creator>Bernardi, Rafael C</creator><creator>Fiorin Giacomo</creator><creator>Hénin Jérôme</creator><creator>McGreevy, Ryan</creator><creator>Radak, Brian K</creator><creator>Skeel, Robert D</creator><creator>Singharoy Abhishek</creator><creator>Wang, Yi</creator><creator>Roux Benoît</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20200728</creationdate><title>Scalable molecular dynamics on CPU and GPU architectures withNAMD</title><author>Hardy, David J ; Maia, Julio D ; Stone, John E ; Ribeiro, João V ; Bernardi, Rafael C ; Fiorin Giacomo ; Hénin Jérôme ; McGreevy, Ryan ; Radak, Brian K ; Skeel, Robert D ; Singharoy Abhishek ; Wang, Yi ; Roux Benoît</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24286671873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Charge distribution</topic><topic>Computer simulation</topic><topic>Electrostatics</topic><topic>External pressure</topic><topic>Molecular dynamics</topic><topic>Sampling</topic><topic>Simulation</topic><topic>Source code</topic><topic>Supercomputers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hardy, David J</creatorcontrib><creatorcontrib>Maia, Julio D</creatorcontrib><creatorcontrib>Stone, John E</creatorcontrib><creatorcontrib>Ribeiro, João V</creatorcontrib><creatorcontrib>Bernardi, Rafael C</creatorcontrib><creatorcontrib>Fiorin Giacomo</creatorcontrib><creatorcontrib>Hénin Jérôme</creatorcontrib><creatorcontrib>McGreevy, Ryan</creatorcontrib><creatorcontrib>Radak, Brian K</creatorcontrib><creatorcontrib>Skeel, Robert D</creatorcontrib><creatorcontrib>Singharoy Abhishek</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Roux Benoît</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hardy, David J</au><au>Maia, Julio D</au><au>Stone, John E</au><au>Ribeiro, João V</au><au>Bernardi, Rafael C</au><au>Fiorin Giacomo</au><au>Hénin Jérôme</au><au>McGreevy, Ryan</au><au>Radak, Brian K</au><au>Skeel, Robert D</au><au>Singharoy Abhishek</au><au>Wang, Yi</au><au>Roux Benoît</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable molecular dynamics on CPU and GPU architectures withNAMD</atitle><jtitle>The Journal of chemical physics</jtitle><date>2020-07-28</date><risdate>2020</risdate><volume>153</volume><issue>4</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>NAMD is a molecular dynamics program designed for high-performance simulations of verylarge biological objects on CPU- and GPU-based architectures. NAMD offers scalableperformance on petascale parallel supercomputers consisting of hundreds of thousands ofcores, as well as on inexpensive commodity clusters commonly found in academicenvironments. It is written in C++ and leans on Charm++ parallel objects for optimalperformance on low-latency architectures. NAMD is a versatile, multipurpose code thatgathers state-of-the-art algorithms to carry out simulations in apt thermodynamicensembles, using the widely popular CHARMM, AMBER, OPLS, and GROMOS biomolecular forcefields. Here, we review the main features of NAMD that allow both equilibrium andenhanced-sampling molecular dynamics simulations with numerical efficiency. We describethe underlying concepts utilized by NAMD and their implementation, most notably forhandling long-range electrostatics; controlling the temperature, pressure, and pH;applying external potentials on tailored grids; leveraging massively parallel resources inmultiple-copy simulations; and hybrid quantum-mechanical/molecular-mechanicaldescriptions. We detail the variety of options offered by NAMD for enhanced-samplingsimulations aimed at determining free-energy differences of either alchemical orgeometrical transformations and outline their applicability to specific problems. Last, wediscuss the roadmap for the development of NAMD and our current efforts toward achievingoptimal performance on GPU-based architectures, for pushing back the limitations that haveprevented biologically realistic billion-atom objects to be fruitfully simulated, and formaking large-scale simulations less expensive and easier to set up, run, and analyze. NAMDis distributed free of charge with its source code at www.ks.uiuc.edu.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0014475</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2020-07, Vol.153 (4)
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_journals_2428667187
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics
subjects Algorithms
Charge distribution
Computer simulation
Electrostatics
External pressure
Molecular dynamics
Sampling
Simulation
Source code
Supercomputers
title Scalable molecular dynamics on CPU and GPU architectures withNAMD
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A25%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20molecular%20dynamics%20on%20CPU%20and%20GPU%20architectures%20withNAMD&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Hardy,%20David%20J&rft.date=2020-07-28&rft.volume=153&rft.issue=4&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/5.0014475&rft_dat=%3Cproquest%3E2428667187%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24286671873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2428667187&rft_id=info:pmid/&rfr_iscdi=true