Loading…
Scalable molecular dynamics on CPU and GPU architectures withNAMD
NAMD is a molecular dynamics program designed for high-performance simulations of verylarge biological objects on CPU- and GPU-based architectures. NAMD offers scalableperformance on petascale parallel supercomputers consisting of hundreds of thousands ofcores, as well as on inexpensive commodity cl...
Saved in:
Published in: | The Journal of chemical physics 2020-07, Vol.153 (4) |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 4 |
container_start_page | |
container_title | The Journal of chemical physics |
container_volume | 153 |
creator | Hardy, David J Maia, Julio D Stone, John E Ribeiro, João V Bernardi, Rafael C Fiorin Giacomo Hénin Jérôme McGreevy, Ryan Radak, Brian K Skeel, Robert D Singharoy Abhishek Wang, Yi Roux Benoît |
description | NAMD is a molecular dynamics program designed for high-performance simulations of verylarge biological objects on CPU- and GPU-based architectures. NAMD offers scalableperformance on petascale parallel supercomputers consisting of hundreds of thousands ofcores, as well as on inexpensive commodity clusters commonly found in academicenvironments. It is written in C++ and leans on Charm++ parallel objects for optimalperformance on low-latency architectures. NAMD is a versatile, multipurpose code thatgathers state-of-the-art algorithms to carry out simulations in apt thermodynamicensembles, using the widely popular CHARMM, AMBER, OPLS, and GROMOS biomolecular forcefields. Here, we review the main features of NAMD that allow both equilibrium andenhanced-sampling molecular dynamics simulations with numerical efficiency. We describethe underlying concepts utilized by NAMD and their implementation, most notably forhandling long-range electrostatics; controlling the temperature, pressure, and pH;applying external potentials on tailored grids; leveraging massively parallel resources inmultiple-copy simulations; and hybrid quantum-mechanical/molecular-mechanicaldescriptions. We detail the variety of options offered by NAMD for enhanced-samplingsimulations aimed at determining free-energy differences of either alchemical orgeometrical transformations and outline their applicability to specific problems. Last, wediscuss the roadmap for the development of NAMD and our current efforts toward achievingoptimal performance on GPU-based architectures, for pushing back the limitations that haveprevented biologically realistic billion-atom objects to be fruitfully simulated, and formaking large-scale simulations less expensive and easier to set up, run, and analyze. NAMDis distributed free of charge with its source code at www.ks.uiuc.edu. |
doi_str_mv | 10.1063/5.0014475 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2428667187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2428667187</sourcerecordid><originalsourceid>FETCH-proquest_journals_24286671873</originalsourceid><addsrcrecordid>eNqNyrsOgjAYQOHGaCJeBt-giTP4l0sLI8HbojFRZ1JLDZAC2kKMby8mPoDTN5yD0IKAQ4B6q8ABIL7PggGyCISRzWgEQ2QBuMSOKNAxmhhTQn8x17dQfBZc8ZuSuGqUFJ3iGmfvmleFMLipcXK6Yl5nePdVi7xopWg7LQ1-FW1-jA_rGRrduTJy_nOKltvNJdnbD908O2natGw6XfcpdX03pJSRkHn_XR-7Fj00</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2428667187</pqid></control><display><type>article</type><title>Scalable molecular dynamics on CPU and GPU architectures withNAMD</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Hardy, David J ; Maia, Julio D ; Stone, John E ; Ribeiro, João V ; Bernardi, Rafael C ; Fiorin Giacomo ; Hénin Jérôme ; McGreevy, Ryan ; Radak, Brian K ; Skeel, Robert D ; Singharoy Abhishek ; Wang, Yi ; Roux Benoît</creator><creatorcontrib>Hardy, David J ; Maia, Julio D ; Stone, John E ; Ribeiro, João V ; Bernardi, Rafael C ; Fiorin Giacomo ; Hénin Jérôme ; McGreevy, Ryan ; Radak, Brian K ; Skeel, Robert D ; Singharoy Abhishek ; Wang, Yi ; Roux Benoît</creatorcontrib><description>NAMD is a molecular dynamics program designed for high-performance simulations of verylarge biological objects on CPU- and GPU-based architectures. NAMD offers scalableperformance on petascale parallel supercomputers consisting of hundreds of thousands ofcores, as well as on inexpensive commodity clusters commonly found in academicenvironments. It is written in C++ and leans on Charm++ parallel objects for optimalperformance on low-latency architectures. NAMD is a versatile, multipurpose code thatgathers state-of-the-art algorithms to carry out simulations in apt thermodynamicensembles, using the widely popular CHARMM, AMBER, OPLS, and GROMOS biomolecular forcefields. Here, we review the main features of NAMD that allow both equilibrium andenhanced-sampling molecular dynamics simulations with numerical efficiency. We describethe underlying concepts utilized by NAMD and their implementation, most notably forhandling long-range electrostatics; controlling the temperature, pressure, and pH;applying external potentials on tailored grids; leveraging massively parallel resources inmultiple-copy simulations; and hybrid quantum-mechanical/molecular-mechanicaldescriptions. We detail the variety of options offered by NAMD for enhanced-samplingsimulations aimed at determining free-energy differences of either alchemical orgeometrical transformations and outline their applicability to specific problems. Last, wediscuss the roadmap for the development of NAMD and our current efforts toward achievingoptimal performance on GPU-based architectures, for pushing back the limitations that haveprevented biologically realistic billion-atom objects to be fruitfully simulated, and formaking large-scale simulations less expensive and easier to set up, run, and analyze. NAMDis distributed free of charge with its source code at www.ks.uiuc.edu.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0014475</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Charge distribution ; Computer simulation ; Electrostatics ; External pressure ; Molecular dynamics ; Sampling ; Simulation ; Source code ; Supercomputers</subject><ispartof>The Journal of chemical physics, 2020-07, Vol.153 (4)</ispartof><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,782,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Hardy, David J</creatorcontrib><creatorcontrib>Maia, Julio D</creatorcontrib><creatorcontrib>Stone, John E</creatorcontrib><creatorcontrib>Ribeiro, João V</creatorcontrib><creatorcontrib>Bernardi, Rafael C</creatorcontrib><creatorcontrib>Fiorin Giacomo</creatorcontrib><creatorcontrib>Hénin Jérôme</creatorcontrib><creatorcontrib>McGreevy, Ryan</creatorcontrib><creatorcontrib>Radak, Brian K</creatorcontrib><creatorcontrib>Skeel, Robert D</creatorcontrib><creatorcontrib>Singharoy Abhishek</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Roux Benoît</creatorcontrib><title>Scalable molecular dynamics on CPU and GPU architectures withNAMD</title><title>The Journal of chemical physics</title><description>NAMD is a molecular dynamics program designed for high-performance simulations of verylarge biological objects on CPU- and GPU-based architectures. NAMD offers scalableperformance on petascale parallel supercomputers consisting of hundreds of thousands ofcores, as well as on inexpensive commodity clusters commonly found in academicenvironments. It is written in C++ and leans on Charm++ parallel objects for optimalperformance on low-latency architectures. NAMD is a versatile, multipurpose code thatgathers state-of-the-art algorithms to carry out simulations in apt thermodynamicensembles, using the widely popular CHARMM, AMBER, OPLS, and GROMOS biomolecular forcefields. Here, we review the main features of NAMD that allow both equilibrium andenhanced-sampling molecular dynamics simulations with numerical efficiency. We describethe underlying concepts utilized by NAMD and their implementation, most notably forhandling long-range electrostatics; controlling the temperature, pressure, and pH;applying external potentials on tailored grids; leveraging massively parallel resources inmultiple-copy simulations; and hybrid quantum-mechanical/molecular-mechanicaldescriptions. We detail the variety of options offered by NAMD for enhanced-samplingsimulations aimed at determining free-energy differences of either alchemical orgeometrical transformations and outline their applicability to specific problems. Last, wediscuss the roadmap for the development of NAMD and our current efforts toward achievingoptimal performance on GPU-based architectures, for pushing back the limitations that haveprevented biologically realistic billion-atom objects to be fruitfully simulated, and formaking large-scale simulations less expensive and easier to set up, run, and analyze. NAMDis distributed free of charge with its source code at www.ks.uiuc.edu.</description><subject>Algorithms</subject><subject>Charge distribution</subject><subject>Computer simulation</subject><subject>Electrostatics</subject><subject>External pressure</subject><subject>Molecular dynamics</subject><subject>Sampling</subject><subject>Simulation</subject><subject>Source code</subject><subject>Supercomputers</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNyrsOgjAYQOHGaCJeBt-giTP4l0sLI8HbojFRZ1JLDZAC2kKMby8mPoDTN5yD0IKAQ4B6q8ABIL7PggGyCISRzWgEQ2QBuMSOKNAxmhhTQn8x17dQfBZc8ZuSuGqUFJ3iGmfvmleFMLipcXK6Yl5nePdVi7xopWg7LQ1-FW1-jA_rGRrduTJy_nOKltvNJdnbD908O2natGw6XfcpdX03pJSRkHn_XR-7Fj00</recordid><startdate>20200728</startdate><enddate>20200728</enddate><creator>Hardy, David J</creator><creator>Maia, Julio D</creator><creator>Stone, John E</creator><creator>Ribeiro, João V</creator><creator>Bernardi, Rafael C</creator><creator>Fiorin Giacomo</creator><creator>Hénin Jérôme</creator><creator>McGreevy, Ryan</creator><creator>Radak, Brian K</creator><creator>Skeel, Robert D</creator><creator>Singharoy Abhishek</creator><creator>Wang, Yi</creator><creator>Roux Benoît</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20200728</creationdate><title>Scalable molecular dynamics on CPU and GPU architectures withNAMD</title><author>Hardy, David J ; Maia, Julio D ; Stone, John E ; Ribeiro, João V ; Bernardi, Rafael C ; Fiorin Giacomo ; Hénin Jérôme ; McGreevy, Ryan ; Radak, Brian K ; Skeel, Robert D ; Singharoy Abhishek ; Wang, Yi ; Roux Benoît</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24286671873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Charge distribution</topic><topic>Computer simulation</topic><topic>Electrostatics</topic><topic>External pressure</topic><topic>Molecular dynamics</topic><topic>Sampling</topic><topic>Simulation</topic><topic>Source code</topic><topic>Supercomputers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hardy, David J</creatorcontrib><creatorcontrib>Maia, Julio D</creatorcontrib><creatorcontrib>Stone, John E</creatorcontrib><creatorcontrib>Ribeiro, João V</creatorcontrib><creatorcontrib>Bernardi, Rafael C</creatorcontrib><creatorcontrib>Fiorin Giacomo</creatorcontrib><creatorcontrib>Hénin Jérôme</creatorcontrib><creatorcontrib>McGreevy, Ryan</creatorcontrib><creatorcontrib>Radak, Brian K</creatorcontrib><creatorcontrib>Skeel, Robert D</creatorcontrib><creatorcontrib>Singharoy Abhishek</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Roux Benoît</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hardy, David J</au><au>Maia, Julio D</au><au>Stone, John E</au><au>Ribeiro, João V</au><au>Bernardi, Rafael C</au><au>Fiorin Giacomo</au><au>Hénin Jérôme</au><au>McGreevy, Ryan</au><au>Radak, Brian K</au><au>Skeel, Robert D</au><au>Singharoy Abhishek</au><au>Wang, Yi</au><au>Roux Benoît</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable molecular dynamics on CPU and GPU architectures withNAMD</atitle><jtitle>The Journal of chemical physics</jtitle><date>2020-07-28</date><risdate>2020</risdate><volume>153</volume><issue>4</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>NAMD is a molecular dynamics program designed for high-performance simulations of verylarge biological objects on CPU- and GPU-based architectures. NAMD offers scalableperformance on petascale parallel supercomputers consisting of hundreds of thousands ofcores, as well as on inexpensive commodity clusters commonly found in academicenvironments. It is written in C++ and leans on Charm++ parallel objects for optimalperformance on low-latency architectures. NAMD is a versatile, multipurpose code thatgathers state-of-the-art algorithms to carry out simulations in apt thermodynamicensembles, using the widely popular CHARMM, AMBER, OPLS, and GROMOS biomolecular forcefields. Here, we review the main features of NAMD that allow both equilibrium andenhanced-sampling molecular dynamics simulations with numerical efficiency. We describethe underlying concepts utilized by NAMD and their implementation, most notably forhandling long-range electrostatics; controlling the temperature, pressure, and pH;applying external potentials on tailored grids; leveraging massively parallel resources inmultiple-copy simulations; and hybrid quantum-mechanical/molecular-mechanicaldescriptions. We detail the variety of options offered by NAMD for enhanced-samplingsimulations aimed at determining free-energy differences of either alchemical orgeometrical transformations and outline their applicability to specific problems. Last, wediscuss the roadmap for the development of NAMD and our current efforts toward achievingoptimal performance on GPU-based architectures, for pushing back the limitations that haveprevented biologically realistic billion-atom objects to be fruitfully simulated, and formaking large-scale simulations less expensive and easier to set up, run, and analyze. NAMDis distributed free of charge with its source code at www.ks.uiuc.edu.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0014475</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2020-07, Vol.153 (4) |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_journals_2428667187 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics |
subjects | Algorithms Charge distribution Computer simulation Electrostatics External pressure Molecular dynamics Sampling Simulation Source code Supercomputers |
title | Scalable molecular dynamics on CPU and GPU architectures withNAMD |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A25%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20molecular%20dynamics%20on%20CPU%20and%20GPU%20architectures%20withNAMD&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Hardy,%20David%20J&rft.date=2020-07-28&rft.volume=153&rft.issue=4&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/5.0014475&rft_dat=%3Cproquest%3E2428667187%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24286671873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2428667187&rft_id=info:pmid/&rfr_iscdi=true |