Loading…

Molecular dynamics of foliar litter and dissolved organic matter during the decomposition process

Decomposing foliar litter organic matter (LOM) in forested watersheds is an essential terrestrial source of dissolved organic matter (DOM) to aquatic ecosystems. To evaluate the relationship of chemical composition between LOM and DOM, we collected freshly fallen leaves of white oak (Quercus alba) a...

Full description

Saved in:
Bibliographic Details
Published in:Biogeochemistry 2020-08, Vol.150 (1), p.17-30
Main Authors: Chen, Huan, Liu, Xijun, Blosser, Gavin D., Rücker, Alexander Martin, Conner, William H., Chow, Alex T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Decomposing foliar litter organic matter (LOM) in forested watersheds is an essential terrestrial source of dissolved organic matter (DOM) to aquatic ecosystems. To evaluate the relationship of chemical composition between LOM and DOM, we collected freshly fallen leaves of white oak (Quercus alba) and conducted an 80-week field decomposition experiment along a small elevation gradient in a floodplain within the Congaree National Park, South Carolina. Foliar litters were collected for water extraction and instrumental analyses using pyrolysis GC/MS, UV/VIS and fluorescence spectrophotometry. Factor analyses of pyrolysates showed that fresh LOM was mainly composed of lignin compounds (LgC), phenolic compounds (PhC), and carbohydrate (Carb), and the change in composition was relatively small throughout the decomposition process. In contrast, there were two distinct chemical compositions of DOM in early (between 0–8 weeks) and late phases (between 16–80 weeks). The early phase had a higher percentage of PhC, but the late phase contained higher percentages of Carb, unsaturated hydrocarbon (UnSaH), aromatic hydrocarbon (ArH), and nitrogen-containing compounds (Ntg). The fluorescence emission-excitation matrix showed there was an increasing trend in humic and fulvic-like fractions in DOM over time, matching well with increases of UnSaH and ArH fractions from the results of pyrolysis GC/MS. Our study illustrated that the changes of chemical components in LOM and water extractable DOM were not parallel during the decomposition process and the degradation of lignin and phenolic compounds was one of the controlling factors on the production of DOM.
ISSN:0168-2563
1573-515X
DOI:10.1007/s10533-020-00684-5