Loading…
MessyTable: Instance Association in Multiple Camera Views
We present an interesting and challenging dataset that features a large number of scenes with messy tables captured from multiple camera views. Each scene in this dataset is highly complex, containing multiple object instances that could be identical, stacked and occluded by other instances. The key...
Saved in:
Published in: | arXiv.org 2020-07 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cai, Zhongang Zhang, Junzhe Ren, Daxuan Yu, Cunjun Zhao, Haiyu Shuai Yi Yeo, Chai Kiat Chen Change Loy |
description | We present an interesting and challenging dataset that features a large number of scenes with messy tables captured from multiple camera views. Each scene in this dataset is highly complex, containing multiple object instances that could be identical, stacked and occluded by other instances. The key challenge is to associate all instances given the RGB image of all views. The seemingly simple task surprisingly fails many popular methods or heuristics that we assume good performance in object association. The dataset challenges existing methods in mining subtle appearance differences, reasoning based on contexts, and fusing appearance with geometric cues for establishing an association. We report interesting findings with some popular baselines, and discuss how this dataset could help inspire new problems and catalyse more robust formulations to tackle real-world instance association problems. Project page: \(\href{https://caizhongang.github.io/projects/MessyTable/}{\text{MessyTable}}\) |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2428813716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2428813716</sourcerecordid><originalsourceid>FETCH-proquest_journals_24288137163</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtOwScC-lNf6KbFEWHbsW1xHKFlJjU3BTx7XXwAZzO8J0FS0DKPFMFwIqlRKMQAqoaylImbNci0bvTN4t7fnEUtRuQH4j8YHQ03nHjeDvbaCaLvNEPDJpfDb5ow5Z3bQnTX9dsezp2zTmbgn_OSLEf_Rzcl3ooQKlc1nkl_7s-ZdM2MQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2428813716</pqid></control><display><type>article</type><title>MessyTable: Instance Association in Multiple Camera Views</title><source>Publicly Available Content Database</source><creator>Cai, Zhongang ; Zhang, Junzhe ; Ren, Daxuan ; Yu, Cunjun ; Zhao, Haiyu ; Shuai Yi ; Yeo, Chai Kiat ; Chen Change Loy</creator><creatorcontrib>Cai, Zhongang ; Zhang, Junzhe ; Ren, Daxuan ; Yu, Cunjun ; Zhao, Haiyu ; Shuai Yi ; Yeo, Chai Kiat ; Chen Change Loy</creatorcontrib><description>We present an interesting and challenging dataset that features a large number of scenes with messy tables captured from multiple camera views. Each scene in this dataset is highly complex, containing multiple object instances that could be identical, stacked and occluded by other instances. The key challenge is to associate all instances given the RGB image of all views. The seemingly simple task surprisingly fails many popular methods or heuristics that we assume good performance in object association. The dataset challenges existing methods in mining subtle appearance differences, reasoning based on contexts, and fusing appearance with geometric cues for establishing an association. We report interesting findings with some popular baselines, and discuss how this dataset could help inspire new problems and catalyse more robust formulations to tackle real-world instance association problems. Project page: \(\href{https://caizhongang.github.io/projects/MessyTable/}{\text{MessyTable}}\)</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cameras ; Datasets ; Heuristic methods</subject><ispartof>arXiv.org, 2020-07</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2428813716?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Cai, Zhongang</creatorcontrib><creatorcontrib>Zhang, Junzhe</creatorcontrib><creatorcontrib>Ren, Daxuan</creatorcontrib><creatorcontrib>Yu, Cunjun</creatorcontrib><creatorcontrib>Zhao, Haiyu</creatorcontrib><creatorcontrib>Shuai Yi</creatorcontrib><creatorcontrib>Yeo, Chai Kiat</creatorcontrib><creatorcontrib>Chen Change Loy</creatorcontrib><title>MessyTable: Instance Association in Multiple Camera Views</title><title>arXiv.org</title><description>We present an interesting and challenging dataset that features a large number of scenes with messy tables captured from multiple camera views. Each scene in this dataset is highly complex, containing multiple object instances that could be identical, stacked and occluded by other instances. The key challenge is to associate all instances given the RGB image of all views. The seemingly simple task surprisingly fails many popular methods or heuristics that we assume good performance in object association. The dataset challenges existing methods in mining subtle appearance differences, reasoning based on contexts, and fusing appearance with geometric cues for establishing an association. We report interesting findings with some popular baselines, and discuss how this dataset could help inspire new problems and catalyse more robust formulations to tackle real-world instance association problems. Project page: \(\href{https://caizhongang.github.io/projects/MessyTable/}{\text{MessyTable}}\)</description><subject>Cameras</subject><subject>Datasets</subject><subject>Heuristic methods</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtOwScC-lNf6KbFEWHbsW1xHKFlJjU3BTx7XXwAZzO8J0FS0DKPFMFwIqlRKMQAqoaylImbNci0bvTN4t7fnEUtRuQH4j8YHQ03nHjeDvbaCaLvNEPDJpfDb5ow5Z3bQnTX9dsezp2zTmbgn_OSLEf_Rzcl3ooQKlc1nkl_7s-ZdM2MQ</recordid><startdate>20200729</startdate><enddate>20200729</enddate><creator>Cai, Zhongang</creator><creator>Zhang, Junzhe</creator><creator>Ren, Daxuan</creator><creator>Yu, Cunjun</creator><creator>Zhao, Haiyu</creator><creator>Shuai Yi</creator><creator>Yeo, Chai Kiat</creator><creator>Chen Change Loy</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200729</creationdate><title>MessyTable: Instance Association in Multiple Camera Views</title><author>Cai, Zhongang ; Zhang, Junzhe ; Ren, Daxuan ; Yu, Cunjun ; Zhao, Haiyu ; Shuai Yi ; Yeo, Chai Kiat ; Chen Change Loy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24288137163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cameras</topic><topic>Datasets</topic><topic>Heuristic methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Cai, Zhongang</creatorcontrib><creatorcontrib>Zhang, Junzhe</creatorcontrib><creatorcontrib>Ren, Daxuan</creatorcontrib><creatorcontrib>Yu, Cunjun</creatorcontrib><creatorcontrib>Zhao, Haiyu</creatorcontrib><creatorcontrib>Shuai Yi</creatorcontrib><creatorcontrib>Yeo, Chai Kiat</creatorcontrib><creatorcontrib>Chen Change Loy</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Zhongang</au><au>Zhang, Junzhe</au><au>Ren, Daxuan</au><au>Yu, Cunjun</au><au>Zhao, Haiyu</au><au>Shuai Yi</au><au>Yeo, Chai Kiat</au><au>Chen Change Loy</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>MessyTable: Instance Association in Multiple Camera Views</atitle><jtitle>arXiv.org</jtitle><date>2020-07-29</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We present an interesting and challenging dataset that features a large number of scenes with messy tables captured from multiple camera views. Each scene in this dataset is highly complex, containing multiple object instances that could be identical, stacked and occluded by other instances. The key challenge is to associate all instances given the RGB image of all views. The seemingly simple task surprisingly fails many popular methods or heuristics that we assume good performance in object association. The dataset challenges existing methods in mining subtle appearance differences, reasoning based on contexts, and fusing appearance with geometric cues for establishing an association. We report interesting findings with some popular baselines, and discuss how this dataset could help inspire new problems and catalyse more robust formulations to tackle real-world instance association problems. Project page: \(\href{https://caizhongang.github.io/projects/MessyTable/}{\text{MessyTable}}\)</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2428813716 |
source | Publicly Available Content Database |
subjects | Cameras Datasets Heuristic methods |
title | MessyTable: Instance Association in Multiple Camera Views |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A36%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=MessyTable:%20Instance%20Association%20in%20Multiple%20Camera%20Views&rft.jtitle=arXiv.org&rft.au=Cai,%20Zhongang&rft.date=2020-07-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2428813716%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24288137163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2428813716&rft_id=info:pmid/&rfr_iscdi=true |