Loading…

Electrocatalytically Active Fe‐(O‐C2)4 Single‐Atom Sites for Efficient Reduction of Nitrogen to Ammonia

Single‐atom catalysts have demonstrated their superiority over other types of catalysts for various reactions. However, the reported nitrogen reduction reaction single‐atom electrocatalysts for the nitrogen reduction reaction exclusively utilize metal–nitrogen or metal–carbon coordination configurat...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie 2020-08, Vol.132 (32), p.13525-13531
Main Authors: Zhang, Shengbo, Jin, Meng, Shi, Tongfei, Han, Miaomiao, Sun, Qiao, Lin, Yue, Ding, Zhenhua, Zheng, Li Rong, Wang, Guozhong, Zhang, Yunxia, Zhang, Haimin, Zhao, Huijun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2320-b81bfa4f2eb2efef16180b166f78610fc594798af8795a5a8757606dcf3d4af53
cites cdi_FETCH-LOGICAL-c2320-b81bfa4f2eb2efef16180b166f78610fc594798af8795a5a8757606dcf3d4af53
container_end_page 13531
container_issue 32
container_start_page 13525
container_title Angewandte Chemie
container_volume 132
creator Zhang, Shengbo
Jin, Meng
Shi, Tongfei
Han, Miaomiao
Sun, Qiao
Lin, Yue
Ding, Zhenhua
Zheng, Li Rong
Wang, Guozhong
Zhang, Yunxia
Zhang, Haimin
Zhao, Huijun
description Single‐atom catalysts have demonstrated their superiority over other types of catalysts for various reactions. However, the reported nitrogen reduction reaction single‐atom electrocatalysts for the nitrogen reduction reaction exclusively utilize metal–nitrogen or metal–carbon coordination configurations as catalytic active sites. Here, we report a Fe single‐atom electrocatalyst supported on low‐cost, nitrogen‐free lignocellulose‐derived carbon. The extended X‐ray absorption fine structure spectra confirm that Fe atoms are anchored to the support via the Fe‐(O‐C2)4 coordination configuration. Density functional theory calculations identify Fe‐(O‐C2)4 as the active site for the nitrogen reduction reaction. An electrode consisting of the electrocatalyst loaded on carbon cloth can afford a NH3 yield rate and faradaic efficiency of 32.1 μg h−1 mgcat.−1 (5350 μg h−1 mgFe−1) and 29.3 %, respectively. An exceptional NH3 yield rate of 307.7 μg h−1 mgcat.−1 (51 283 μg h−1 mgFe−1) with a near record faradaic efficiency of 51.0 % can be achieved with the electrocatalyst immobilized on a glassy carbon electrode. Effects of distribution on performance: A single‐atom Fe electrocatalyst supported on nitrogen‐free lignocellulose‐derived graphitic carbon with Fe‐(O‐C2)4 active sites was synthesized and exceptional catalytic activity for N2 reduction to NH3 was demonstrated. The results indicate that the performance of a given catalyst is strongly influenced by factors other than its intrinsic electrocatalytic activity.
doi_str_mv 10.1002/ange.202005930
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2428995467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2428995467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2320-b81bfa4f2eb2efef16180b166f78610fc594798af8795a5a8757606dcf3d4af53</originalsourceid><addsrcrecordid>eNqFkL9OwzAQxi0EEqWwMltigSHl7DiJPUZVWpBQK_FnjhzXrlwlcXFcUDYegWfkSUhVBCPLne70_b7TfQhdEpgQAHor27WeUKAAiYjhCI1IQkkUZ0l2jEYAjEWcMnGKzrpuAwApzcQINUWtVfBOySDrPlgl67rHuQr2TeOZ_vr4vF4OZUpvGH6y7brer_LgmmEKusPGeVwYY5XVbcCPerUbUNdiZ_DCDr5r3eLgcN40rrXyHJ0YWXf64qeP0cuseJ7eRQ_L-f00f4gUjSlEFSeVkcxQXVFttCEp4VCRNDUZTwkYlQiWCS4Nz0QiE8mHH1NIV8rEKyZNEo_R1cF3693rTneh3Lidb4eTJWWUC5GwNBtUk4NKedd1Xpty620jfV8SKPeRlvtIy99IB0AcgHdb6_4fdZkv5sUf-w1trX0x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2428995467</pqid></control><display><type>article</type><title>Electrocatalytically Active Fe‐(O‐C2)4 Single‐Atom Sites for Efficient Reduction of Nitrogen to Ammonia</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Zhang, Shengbo ; Jin, Meng ; Shi, Tongfei ; Han, Miaomiao ; Sun, Qiao ; Lin, Yue ; Ding, Zhenhua ; Zheng, Li Rong ; Wang, Guozhong ; Zhang, Yunxia ; Zhang, Haimin ; Zhao, Huijun</creator><creatorcontrib>Zhang, Shengbo ; Jin, Meng ; Shi, Tongfei ; Han, Miaomiao ; Sun, Qiao ; Lin, Yue ; Ding, Zhenhua ; Zheng, Li Rong ; Wang, Guozhong ; Zhang, Yunxia ; Zhang, Haimin ; Zhao, Huijun</creatorcontrib><description>Single‐atom catalysts have demonstrated their superiority over other types of catalysts for various reactions. However, the reported nitrogen reduction reaction single‐atom electrocatalysts for the nitrogen reduction reaction exclusively utilize metal–nitrogen or metal–carbon coordination configurations as catalytic active sites. Here, we report a Fe single‐atom electrocatalyst supported on low‐cost, nitrogen‐free lignocellulose‐derived carbon. The extended X‐ray absorption fine structure spectra confirm that Fe atoms are anchored to the support via the Fe‐(O‐C2)4 coordination configuration. Density functional theory calculations identify Fe‐(O‐C2)4 as the active site for the nitrogen reduction reaction. An electrode consisting of the electrocatalyst loaded on carbon cloth can afford a NH3 yield rate and faradaic efficiency of 32.1 μg h−1 mgcat.−1 (5350 μg h−1 mgFe−1) and 29.3 %, respectively. An exceptional NH3 yield rate of 307.7 μg h−1 mgcat.−1 (51 283 μg h−1 mgFe−1) with a near record faradaic efficiency of 51.0 % can be achieved with the electrocatalyst immobilized on a glassy carbon electrode. Effects of distribution on performance: A single‐atom Fe electrocatalyst supported on nitrogen‐free lignocellulose‐derived graphitic carbon with Fe‐(O‐C2)4 active sites was synthesized and exceptional catalytic activity for N2 reduction to NH3 was demonstrated. The results indicate that the performance of a given catalyst is strongly influenced by factors other than its intrinsic electrocatalytic activity.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202005930</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Ammonia ; Carbon ; Catalysts ; Chemical reduction ; Chemistry ; Cloth ; Configurations ; Coordination ; Density functional theory ; electrocatalysis ; Electrocatalysts ; Electrodes ; Fine structure ; Glassy carbon ; Lignocellulose ; Nitrogen ; nitrogen reduction ; Single atom catalysts ; Ultrastructure</subject><ispartof>Angewandte Chemie, 2020-08, Vol.132 (32), p.13525-13531</ispartof><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2320-b81bfa4f2eb2efef16180b166f78610fc594798af8795a5a8757606dcf3d4af53</citedby><cites>FETCH-LOGICAL-c2320-b81bfa4f2eb2efef16180b166f78610fc594798af8795a5a8757606dcf3d4af53</cites><orcidid>0000-0002-3028-0459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhang, Shengbo</creatorcontrib><creatorcontrib>Jin, Meng</creatorcontrib><creatorcontrib>Shi, Tongfei</creatorcontrib><creatorcontrib>Han, Miaomiao</creatorcontrib><creatorcontrib>Sun, Qiao</creatorcontrib><creatorcontrib>Lin, Yue</creatorcontrib><creatorcontrib>Ding, Zhenhua</creatorcontrib><creatorcontrib>Zheng, Li Rong</creatorcontrib><creatorcontrib>Wang, Guozhong</creatorcontrib><creatorcontrib>Zhang, Yunxia</creatorcontrib><creatorcontrib>Zhang, Haimin</creatorcontrib><creatorcontrib>Zhao, Huijun</creatorcontrib><title>Electrocatalytically Active Fe‐(O‐C2)4 Single‐Atom Sites for Efficient Reduction of Nitrogen to Ammonia</title><title>Angewandte Chemie</title><description>Single‐atom catalysts have demonstrated their superiority over other types of catalysts for various reactions. However, the reported nitrogen reduction reaction single‐atom electrocatalysts for the nitrogen reduction reaction exclusively utilize metal–nitrogen or metal–carbon coordination configurations as catalytic active sites. Here, we report a Fe single‐atom electrocatalyst supported on low‐cost, nitrogen‐free lignocellulose‐derived carbon. The extended X‐ray absorption fine structure spectra confirm that Fe atoms are anchored to the support via the Fe‐(O‐C2)4 coordination configuration. Density functional theory calculations identify Fe‐(O‐C2)4 as the active site for the nitrogen reduction reaction. An electrode consisting of the electrocatalyst loaded on carbon cloth can afford a NH3 yield rate and faradaic efficiency of 32.1 μg h−1 mgcat.−1 (5350 μg h−1 mgFe−1) and 29.3 %, respectively. An exceptional NH3 yield rate of 307.7 μg h−1 mgcat.−1 (51 283 μg h−1 mgFe−1) with a near record faradaic efficiency of 51.0 % can be achieved with the electrocatalyst immobilized on a glassy carbon electrode. Effects of distribution on performance: A single‐atom Fe electrocatalyst supported on nitrogen‐free lignocellulose‐derived graphitic carbon with Fe‐(O‐C2)4 active sites was synthesized and exceptional catalytic activity for N2 reduction to NH3 was demonstrated. The results indicate that the performance of a given catalyst is strongly influenced by factors other than its intrinsic electrocatalytic activity.</description><subject>Ammonia</subject><subject>Carbon</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Chemistry</subject><subject>Cloth</subject><subject>Configurations</subject><subject>Coordination</subject><subject>Density functional theory</subject><subject>electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Electrodes</subject><subject>Fine structure</subject><subject>Glassy carbon</subject><subject>Lignocellulose</subject><subject>Nitrogen</subject><subject>nitrogen reduction</subject><subject>Single atom catalysts</subject><subject>Ultrastructure</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkL9OwzAQxi0EEqWwMltigSHl7DiJPUZVWpBQK_FnjhzXrlwlcXFcUDYegWfkSUhVBCPLne70_b7TfQhdEpgQAHor27WeUKAAiYjhCI1IQkkUZ0l2jEYAjEWcMnGKzrpuAwApzcQINUWtVfBOySDrPlgl67rHuQr2TeOZ_vr4vF4OZUpvGH6y7brer_LgmmEKusPGeVwYY5XVbcCPerUbUNdiZ_DCDr5r3eLgcN40rrXyHJ0YWXf64qeP0cuseJ7eRQ_L-f00f4gUjSlEFSeVkcxQXVFttCEp4VCRNDUZTwkYlQiWCS4Nz0QiE8mHH1NIV8rEKyZNEo_R1cF3693rTneh3Lidb4eTJWWUC5GwNBtUk4NKedd1Xpty620jfV8SKPeRlvtIy99IB0AcgHdb6_4fdZkv5sUf-w1trX0x</recordid><startdate>20200803</startdate><enddate>20200803</enddate><creator>Zhang, Shengbo</creator><creator>Jin, Meng</creator><creator>Shi, Tongfei</creator><creator>Han, Miaomiao</creator><creator>Sun, Qiao</creator><creator>Lin, Yue</creator><creator>Ding, Zhenhua</creator><creator>Zheng, Li Rong</creator><creator>Wang, Guozhong</creator><creator>Zhang, Yunxia</creator><creator>Zhang, Haimin</creator><creator>Zhao, Huijun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3028-0459</orcidid></search><sort><creationdate>20200803</creationdate><title>Electrocatalytically Active Fe‐(O‐C2)4 Single‐Atom Sites for Efficient Reduction of Nitrogen to Ammonia</title><author>Zhang, Shengbo ; Jin, Meng ; Shi, Tongfei ; Han, Miaomiao ; Sun, Qiao ; Lin, Yue ; Ding, Zhenhua ; Zheng, Li Rong ; Wang, Guozhong ; Zhang, Yunxia ; Zhang, Haimin ; Zhao, Huijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2320-b81bfa4f2eb2efef16180b166f78610fc594798af8795a5a8757606dcf3d4af53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ammonia</topic><topic>Carbon</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Chemistry</topic><topic>Cloth</topic><topic>Configurations</topic><topic>Coordination</topic><topic>Density functional theory</topic><topic>electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Electrodes</topic><topic>Fine structure</topic><topic>Glassy carbon</topic><topic>Lignocellulose</topic><topic>Nitrogen</topic><topic>nitrogen reduction</topic><topic>Single atom catalysts</topic><topic>Ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shengbo</creatorcontrib><creatorcontrib>Jin, Meng</creatorcontrib><creatorcontrib>Shi, Tongfei</creatorcontrib><creatorcontrib>Han, Miaomiao</creatorcontrib><creatorcontrib>Sun, Qiao</creatorcontrib><creatorcontrib>Lin, Yue</creatorcontrib><creatorcontrib>Ding, Zhenhua</creatorcontrib><creatorcontrib>Zheng, Li Rong</creatorcontrib><creatorcontrib>Wang, Guozhong</creatorcontrib><creatorcontrib>Zhang, Yunxia</creatorcontrib><creatorcontrib>Zhang, Haimin</creatorcontrib><creatorcontrib>Zhao, Huijun</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shengbo</au><au>Jin, Meng</au><au>Shi, Tongfei</au><au>Han, Miaomiao</au><au>Sun, Qiao</au><au>Lin, Yue</au><au>Ding, Zhenhua</au><au>Zheng, Li Rong</au><au>Wang, Guozhong</au><au>Zhang, Yunxia</au><au>Zhang, Haimin</au><au>Zhao, Huijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrocatalytically Active Fe‐(O‐C2)4 Single‐Atom Sites for Efficient Reduction of Nitrogen to Ammonia</atitle><jtitle>Angewandte Chemie</jtitle><date>2020-08-03</date><risdate>2020</risdate><volume>132</volume><issue>32</issue><spage>13525</spage><epage>13531</epage><pages>13525-13531</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Single‐atom catalysts have demonstrated their superiority over other types of catalysts for various reactions. However, the reported nitrogen reduction reaction single‐atom electrocatalysts for the nitrogen reduction reaction exclusively utilize metal–nitrogen or metal–carbon coordination configurations as catalytic active sites. Here, we report a Fe single‐atom electrocatalyst supported on low‐cost, nitrogen‐free lignocellulose‐derived carbon. The extended X‐ray absorption fine structure spectra confirm that Fe atoms are anchored to the support via the Fe‐(O‐C2)4 coordination configuration. Density functional theory calculations identify Fe‐(O‐C2)4 as the active site for the nitrogen reduction reaction. An electrode consisting of the electrocatalyst loaded on carbon cloth can afford a NH3 yield rate and faradaic efficiency of 32.1 μg h−1 mgcat.−1 (5350 μg h−1 mgFe−1) and 29.3 %, respectively. An exceptional NH3 yield rate of 307.7 μg h−1 mgcat.−1 (51 283 μg h−1 mgFe−1) with a near record faradaic efficiency of 51.0 % can be achieved with the electrocatalyst immobilized on a glassy carbon electrode. Effects of distribution on performance: A single‐atom Fe electrocatalyst supported on nitrogen‐free lignocellulose‐derived graphitic carbon with Fe‐(O‐C2)4 active sites was synthesized and exceptional catalytic activity for N2 reduction to NH3 was demonstrated. The results indicate that the performance of a given catalyst is strongly influenced by factors other than its intrinsic electrocatalytic activity.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202005930</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3028-0459</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2020-08, Vol.132 (32), p.13525-13531
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_2428995467
source Wiley-Blackwell Read & Publish Collection
subjects Ammonia
Carbon
Catalysts
Chemical reduction
Chemistry
Cloth
Configurations
Coordination
Density functional theory
electrocatalysis
Electrocatalysts
Electrodes
Fine structure
Glassy carbon
Lignocellulose
Nitrogen
nitrogen reduction
Single atom catalysts
Ultrastructure
title Electrocatalytically Active Fe‐(O‐C2)4 Single‐Atom Sites for Efficient Reduction of Nitrogen to Ammonia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A44%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrocatalytically%20Active%20Fe%E2%80%90(O%E2%80%90C2)4%20Single%E2%80%90Atom%20Sites%20for%20Efficient%20Reduction%20of%20Nitrogen%20to%20Ammonia&rft.jtitle=Angewandte%20Chemie&rft.au=Zhang,%20Shengbo&rft.date=2020-08-03&rft.volume=132&rft.issue=32&rft.spage=13525&rft.epage=13531&rft.pages=13525-13531&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202005930&rft_dat=%3Cproquest_cross%3E2428995467%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2320-b81bfa4f2eb2efef16180b166f78610fc594798af8795a5a8757606dcf3d4af53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2428995467&rft_id=info:pmid/&rfr_iscdi=true