Loading…

Baryogenesis and dark matter from freeze-in

We propose a simple model in which the baryon asymmetry and dark matter are created via the decays and inverse decays of QCD-triplet scalars, at least one of which must be in the TeV mass range. Singlet fermions produced in these decays constitute the dark matter. The singlets never reach equilibriu...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. D 2020-06, Vol.101 (11), p.1, Article 115023
Main Authors: Shuve, Brian, Tucker-Smith, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c322t-8b24699a8d35f2c5f05d3246a43da4a53394eff1e36cda9b57272034a77b868e3
cites cdi_FETCH-LOGICAL-c322t-8b24699a8d35f2c5f05d3246a43da4a53394eff1e36cda9b57272034a77b868e3
container_end_page
container_issue 11
container_start_page 1
container_title Physical review. D
container_volume 101
creator Shuve, Brian
Tucker-Smith, David
description We propose a simple model in which the baryon asymmetry and dark matter are created via the decays and inverse decays of QCD-triplet scalars, at least one of which must be in the TeV mass range. Singlet fermions produced in these decays constitute the dark matter. The singlets never reach equilibrium, and their coherent production, propagation, and annihilation generates a baryon asymmetry. We find that the out-of-equilibrium condition and the dark matter density constraint typically require the lightest scalar to be long-lived, giving good prospects for detection or exclusion in current and upcoming colliders. In generalizing the leptogenesis mechanism of Akhmedov, Rubakov and Smirnov, our model expands the phenomenological possibilities for low-scale baryogenesis. We propose a simple model in which the baryon asymmetry and dark matter are created via the decays and inverse decays of QCD-triplet scalars, at least one of which must be in the TeV mass range. Singlet fermions produced in these decays constitute the dark matter. The singlets never reach equilibrium, and their coherent production, propagation, and annihilation generates a baryon asymmetry. We find that the out-of-equilibrium condition and the dark matter density constraint typically require the lightest scalar to be long-lived, giving good prospects for detection or exclusion in current and upcoming colliders. In generalizing the leptogenesis mechanism of Akhmedov, Rubakov and Smirnov, our model expands the phenomenological possibilities for low-scale baryogenesis.
doi_str_mv 10.1103/PhysRevD.101.115023
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2429072050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429072050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-8b24699a8d35f2c5f05d3246a43da4a53394eff1e36cda9b57272034a77b868e3</originalsourceid><addsrcrecordid>eNo9kE9LxDAQxYMouKz7CbwUPErXSSZpm6Ouf2FBET2HtJloV7ddk66wfnojVS8zjx-PGd5j7JjDnHPAs4fXXXykz8s5B56IAoF7bCJkCTmA0Pv_msMhm8W4giQL0CXnE3Z6YcOuf6GOYhsz27nM2fCWre0wUMh86NdpEH1R3nZH7MDb90iz3z1lz9dXT4vbfHl_c7c4X-YNCjHkVS1kobWtHCovGuVBOUzISnRWWoWoJXnPCYvGWV2rUpQCUNqyrKuiIpyyk_HuJvQfW4qDWfXb0KWXRkihIbkVJBeOrib0MQbyZhPadUpjOJifYsxfMQlwMxaD33Z-VcI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429072050</pqid></control><display><type>article</type><title>Baryogenesis and dark matter from freeze-in</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Shuve, Brian ; Tucker-Smith, David</creator><creatorcontrib>Shuve, Brian ; Tucker-Smith, David</creatorcontrib><description>We propose a simple model in which the baryon asymmetry and dark matter are created via the decays and inverse decays of QCD-triplet scalars, at least one of which must be in the TeV mass range. Singlet fermions produced in these decays constitute the dark matter. The singlets never reach equilibrium, and their coherent production, propagation, and annihilation generates a baryon asymmetry. We find that the out-of-equilibrium condition and the dark matter density constraint typically require the lightest scalar to be long-lived, giving good prospects for detection or exclusion in current and upcoming colliders. In generalizing the leptogenesis mechanism of Akhmedov, Rubakov and Smirnov, our model expands the phenomenological possibilities for low-scale baryogenesis. We propose a simple model in which the baryon asymmetry and dark matter are created via the decays and inverse decays of QCD-triplet scalars, at least one of which must be in the TeV mass range. Singlet fermions produced in these decays constitute the dark matter. The singlets never reach equilibrium, and their coherent production, propagation, and annihilation generates a baryon asymmetry. We find that the out-of-equilibrium condition and the dark matter density constraint typically require the lightest scalar to be long-lived, giving good prospects for detection or exclusion in current and upcoming colliders. In generalizing the leptogenesis mechanism of Akhmedov, Rubakov and Smirnov, our model expands the phenomenological possibilities for low-scale baryogenesis.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.101.115023</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Asymmetry ; Baryons ; Cosmology ; Dark matter ; Decay ; Density ; Equilibrium ; Fermions ; Propagation ; Scalars</subject><ispartof>Physical review. D, 2020-06, Vol.101 (11), p.1, Article 115023</ispartof><rights>Copyright American Physical Society Jun 1, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-8b24699a8d35f2c5f05d3246a43da4a53394eff1e36cda9b57272034a77b868e3</citedby><cites>FETCH-LOGICAL-c322t-8b24699a8d35f2c5f05d3246a43da4a53394eff1e36cda9b57272034a77b868e3</cites><orcidid>0000-0002-3524-2021 ; 0000-0003-3345-4108</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shuve, Brian</creatorcontrib><creatorcontrib>Tucker-Smith, David</creatorcontrib><title>Baryogenesis and dark matter from freeze-in</title><title>Physical review. D</title><description>We propose a simple model in which the baryon asymmetry and dark matter are created via the decays and inverse decays of QCD-triplet scalars, at least one of which must be in the TeV mass range. Singlet fermions produced in these decays constitute the dark matter. The singlets never reach equilibrium, and their coherent production, propagation, and annihilation generates a baryon asymmetry. We find that the out-of-equilibrium condition and the dark matter density constraint typically require the lightest scalar to be long-lived, giving good prospects for detection or exclusion in current and upcoming colliders. In generalizing the leptogenesis mechanism of Akhmedov, Rubakov and Smirnov, our model expands the phenomenological possibilities for low-scale baryogenesis. We propose a simple model in which the baryon asymmetry and dark matter are created via the decays and inverse decays of QCD-triplet scalars, at least one of which must be in the TeV mass range. Singlet fermions produced in these decays constitute the dark matter. The singlets never reach equilibrium, and their coherent production, propagation, and annihilation generates a baryon asymmetry. We find that the out-of-equilibrium condition and the dark matter density constraint typically require the lightest scalar to be long-lived, giving good prospects for detection or exclusion in current and upcoming colliders. In generalizing the leptogenesis mechanism of Akhmedov, Rubakov and Smirnov, our model expands the phenomenological possibilities for low-scale baryogenesis.</description><subject>Asymmetry</subject><subject>Baryons</subject><subject>Cosmology</subject><subject>Dark matter</subject><subject>Decay</subject><subject>Density</subject><subject>Equilibrium</subject><subject>Fermions</subject><subject>Propagation</subject><subject>Scalars</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LxDAQxYMouKz7CbwUPErXSSZpm6Ouf2FBET2HtJloV7ddk66wfnojVS8zjx-PGd5j7JjDnHPAs4fXXXykz8s5B56IAoF7bCJkCTmA0Pv_msMhm8W4giQL0CXnE3Z6YcOuf6GOYhsz27nM2fCWre0wUMh86NdpEH1R3nZH7MDb90iz3z1lz9dXT4vbfHl_c7c4X-YNCjHkVS1kobWtHCovGuVBOUzISnRWWoWoJXnPCYvGWV2rUpQCUNqyrKuiIpyyk_HuJvQfW4qDWfXb0KWXRkihIbkVJBeOrib0MQbyZhPadUpjOJifYsxfMQlwMxaD33Z-VcI</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Shuve, Brian</creator><creator>Tucker-Smith, David</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3524-2021</orcidid><orcidid>https://orcid.org/0000-0003-3345-4108</orcidid></search><sort><creationdate>20200601</creationdate><title>Baryogenesis and dark matter from freeze-in</title><author>Shuve, Brian ; Tucker-Smith, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-8b24699a8d35f2c5f05d3246a43da4a53394eff1e36cda9b57272034a77b868e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Asymmetry</topic><topic>Baryons</topic><topic>Cosmology</topic><topic>Dark matter</topic><topic>Decay</topic><topic>Density</topic><topic>Equilibrium</topic><topic>Fermions</topic><topic>Propagation</topic><topic>Scalars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shuve, Brian</creatorcontrib><creatorcontrib>Tucker-Smith, David</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shuve, Brian</au><au>Tucker-Smith, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Baryogenesis and dark matter from freeze-in</atitle><jtitle>Physical review. D</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>101</volume><issue>11</issue><spage>1</spage><pages>1-</pages><artnum>115023</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We propose a simple model in which the baryon asymmetry and dark matter are created via the decays and inverse decays of QCD-triplet scalars, at least one of which must be in the TeV mass range. Singlet fermions produced in these decays constitute the dark matter. The singlets never reach equilibrium, and their coherent production, propagation, and annihilation generates a baryon asymmetry. We find that the out-of-equilibrium condition and the dark matter density constraint typically require the lightest scalar to be long-lived, giving good prospects for detection or exclusion in current and upcoming colliders. In generalizing the leptogenesis mechanism of Akhmedov, Rubakov and Smirnov, our model expands the phenomenological possibilities for low-scale baryogenesis. We propose a simple model in which the baryon asymmetry and dark matter are created via the decays and inverse decays of QCD-triplet scalars, at least one of which must be in the TeV mass range. Singlet fermions produced in these decays constitute the dark matter. The singlets never reach equilibrium, and their coherent production, propagation, and annihilation generates a baryon asymmetry. We find that the out-of-equilibrium condition and the dark matter density constraint typically require the lightest scalar to be long-lived, giving good prospects for detection or exclusion in current and upcoming colliders. In generalizing the leptogenesis mechanism of Akhmedov, Rubakov and Smirnov, our model expands the phenomenological possibilities for low-scale baryogenesis.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.101.115023</doi><orcidid>https://orcid.org/0000-0002-3524-2021</orcidid><orcidid>https://orcid.org/0000-0003-3345-4108</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2020-06, Vol.101 (11), p.1, Article 115023
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_journals_2429072050
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Asymmetry
Baryons
Cosmology
Dark matter
Decay
Density
Equilibrium
Fermions
Propagation
Scalars
title Baryogenesis and dark matter from freeze-in
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A16%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Baryogenesis%20and%20dark%20matter%20from%20freeze-in&rft.jtitle=Physical%20review.%20D&rft.au=Shuve,%20Brian&rft.date=2020-06-01&rft.volume=101&rft.issue=11&rft.spage=1&rft.pages=1-&rft.artnum=115023&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.101.115023&rft_dat=%3Cproquest_cross%3E2429072050%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-8b24699a8d35f2c5f05d3246a43da4a53394eff1e36cda9b57272034a77b868e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2429072050&rft_id=info:pmid/&rfr_iscdi=true