Loading…
Expression profiling of miRNAs indicates crosstalk between phytohormonal response and rhizobial infection in chickpea
Legumes develop root nodules in which bacteria fix nitrogen for plants. The phytohormones auxin and cytokinin regulate nodule organogenesis by recruiting various genes to effect symbiosis. Moreover, these genes are regulated by the action of microRNAs also. To understand the complex regulatory netwo...
Saved in:
Published in: | Journal of plant biochemistry and biotechnology 2020-09, Vol.29 (3), p.380-394 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Legumes develop root nodules in which bacteria fix nitrogen for plants. The phytohormones auxin and cytokinin regulate nodule organogenesis by recruiting various genes to effect symbiosis. Moreover, these genes are regulated by the action of microRNAs also. To understand the complex regulatory network involving miRNAs in response to phytohormones and rhizobial interactions in chickpea roots, a miRNA expression profiling was performed. Indole acetic acid and 6-benzylaminopurine at concentrations of 0.1, 1 and 10 µM were used for auxin and cytokinin exogenous treatment and
Mesorhizobium ciceri
to study rhizobial interaction with chickpea root. Expression profiling of a set of 11 miRNAs was performed. Further, the targets of the candidate miRNAs were identified, followed by functional annotation. This analysis revealed that cat-miR160, cat-miR164, cat-miR396 and cat-miR398 were responsive to auxin and cytokinin. cat-miR319 was found to be only auxin responsive and is known to regulate auxin signalling by targeting TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) which interacts with auxin inducible genes. Further, cytokinin elicited a response at very low concentration of 0.1 µM, and most of the miRNAs investigated were responsive to cytokinin. Interactome analysis revealed that cat-miR164 and cat-miR168 work in conjunction to regulate auxin signalling. Interestingly, cat-miR169 and cat-miR482 were low expressing during auxin treatment and
M. ciceri
infection but their expression spiked during cytokinin treatment, indicating a cytokinin mediated mode of action. The miRNA expression profiling in response to phytohormones and rhizobia and the reported function of their target genes suggested a crosstalk among the phytohormonal responses during chickpea nodulation. |
---|---|
ISSN: | 0971-7811 0974-1275 |
DOI: | 10.1007/s13562-019-00545-9 |