Loading…
Numerical investigation of magnetic nanofluids flow over rotating disk embedded in a porous medium
Combined effects of thermal radiation and variable viscosity on a time-dependent boundary-layer flow of magnetic nanofluids over a rotating disk in the presence of the porous medium have been numerically investigated. To carry out the study, hydrocarbon based magnetic nanofluid containing magnetite...
Saved in:
Published in: | Thermal science 2018, Vol.22 (6 Part B), p.2883-2895 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c307t-69fdd4024a6e3ac7584c1eb6f1864090a232c302d7c37f02a5c12f94862f66633 |
---|---|
cites | |
container_end_page | 2895 |
container_issue | 6 Part B |
container_start_page | 2883 |
container_title | Thermal science |
container_volume | 22 |
creator | Joshi, Vimal Ram, Paras Tripathi, Dharmendra Sharma, Kushal |
description | Combined effects of thermal radiation and variable viscosity on a time-dependent boundary-layer flow of magnetic nanofluids over a rotating disk in the presence of the porous medium have been numerically investigated. To carry out the study, hydrocarbon based magnetic nanofluid containing magnetite Fe3O4 particles of 10 nm with magnetic phase concentration of 10% has been taken. For numerical solutions of the modelled system containing the governing equation of the flow, a MATLAB tool ODE45 is employed with shooting technique for the initial guess of the unknown boundary conditions. The flow phenomenon and heat transfer on the plate surface are characterised by various flow parameters such as viscosity variations, unsteady rotation parameter, Prandtl number, and radiation parameter. Also, a comparative thermal analysis has been carried out for magnetic nanofluids having three different bases viz. hydrocarbon, fluorocarbon, and water. Results reveal that heat transfer rate of hydrocarbon base magnetic nanofluids is 73.4511% faster than water base magnetic nanofluids, and 239.7458% faster than fluorocarbon base magnetic nanofluids. This enhanced heat transfer capacity of hydrocarbon base magnetic nanofluids will help in improving the performance of oil and ore extraction drilling systems used in mining industry and other geothermal applications. |
doi_str_mv | 10.2298/TSCI170323139J |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2429087355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429087355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-69fdd4024a6e3ac7584c1eb6f1864090a232c302d7c37f02a5c12f94862f66633</originalsourceid><addsrcrecordid>eNpVkDtPwzAYRS0EEqWwMltiTrH9ObYzoohHUQUDZY5cPyqXJC52UsS_J6gsTHc5ulf3IHRNyYKxSt2u3-ollQQYUKieT9CMAfBCUgGnaEag5EWlQJyji5x3hAihlJyhzcvYuRSMbnHoDy4PYauHEHscPe70tndDMLjXffTtGGzGvo1fOB5cwikOE9lvsQ35A7tu46x1dmrBGu9jimPGnbNh7C7Rmddtdld_OUfvD_fr-qlYvT4u67tVYYDIoRCVt5YTxrVwoI0sFTfUbYSnSnBSEc2ATSSz0oD0hOnSUOYrrgTzQgiAObo59u5T_BynK80ujqmfJhvGWUWUhLKcqMWRMinmnJxv9il0On03lDS_Hpv_HuEHOCZmFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429087355</pqid></control><display><type>article</type><title>Numerical investigation of magnetic nanofluids flow over rotating disk embedded in a porous medium</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Joshi, Vimal ; Ram, Paras ; Tripathi, Dharmendra ; Sharma, Kushal</creator><creatorcontrib>Joshi, Vimal ; Ram, Paras ; Tripathi, Dharmendra ; Sharma, Kushal</creatorcontrib><description>Combined effects of thermal radiation and variable viscosity on a time-dependent boundary-layer flow of magnetic nanofluids over a rotating disk in the presence of the porous medium have been numerically investigated. To carry out the study, hydrocarbon based magnetic nanofluid containing magnetite Fe3O4 particles of 10 nm with magnetic phase concentration of 10% has been taken. For numerical solutions of the modelled system containing the governing equation of the flow, a MATLAB tool ODE45 is employed with shooting technique for the initial guess of the unknown boundary conditions. The flow phenomenon and heat transfer on the plate surface are characterised by various flow parameters such as viscosity variations, unsteady rotation parameter, Prandtl number, and radiation parameter. Also, a comparative thermal analysis has been carried out for magnetic nanofluids having three different bases viz. hydrocarbon, fluorocarbon, and water. Results reveal that heat transfer rate of hydrocarbon base magnetic nanofluids is 73.4511% faster than water base magnetic nanofluids, and 239.7458% faster than fluorocarbon base magnetic nanofluids. This enhanced heat transfer capacity of hydrocarbon base magnetic nanofluids will help in improving the performance of oil and ore extraction drilling systems used in mining industry and other geothermal applications.</description><identifier>ISSN: 0354-9836</identifier><identifier>EISSN: 2334-7163</identifier><identifier>DOI: 10.2298/TSCI170323139J</identifier><language>eng</language><publisher>Belgrade: Society of Thermal Engineers of Serbia</publisher><subject>Boundary conditions ; Boundary layer flow ; Heat transfer ; Hydrocarbons ; Iron oxides ; Mining industry ; Nanofluids ; Parameters ; Perfluorocarbons ; Porous media ; Prandtl number ; Rotating disks ; Rotation ; Thermal analysis ; Thermal radiation ; Time dependence ; Viscosity</subject><ispartof>Thermal science, 2018, Vol.22 (6 Part B), p.2883-2895</ispartof><rights>2018. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-69fdd4024a6e3ac7584c1eb6f1864090a232c302d7c37f02a5c12f94862f66633</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2429087355?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Joshi, Vimal</creatorcontrib><creatorcontrib>Ram, Paras</creatorcontrib><creatorcontrib>Tripathi, Dharmendra</creatorcontrib><creatorcontrib>Sharma, Kushal</creatorcontrib><title>Numerical investigation of magnetic nanofluids flow over rotating disk embedded in a porous medium</title><title>Thermal science</title><description>Combined effects of thermal radiation and variable viscosity on a time-dependent boundary-layer flow of magnetic nanofluids over a rotating disk in the presence of the porous medium have been numerically investigated. To carry out the study, hydrocarbon based magnetic nanofluid containing magnetite Fe3O4 particles of 10 nm with magnetic phase concentration of 10% has been taken. For numerical solutions of the modelled system containing the governing equation of the flow, a MATLAB tool ODE45 is employed with shooting technique for the initial guess of the unknown boundary conditions. The flow phenomenon and heat transfer on the plate surface are characterised by various flow parameters such as viscosity variations, unsteady rotation parameter, Prandtl number, and radiation parameter. Also, a comparative thermal analysis has been carried out for magnetic nanofluids having three different bases viz. hydrocarbon, fluorocarbon, and water. Results reveal that heat transfer rate of hydrocarbon base magnetic nanofluids is 73.4511% faster than water base magnetic nanofluids, and 239.7458% faster than fluorocarbon base magnetic nanofluids. This enhanced heat transfer capacity of hydrocarbon base magnetic nanofluids will help in improving the performance of oil and ore extraction drilling systems used in mining industry and other geothermal applications.</description><subject>Boundary conditions</subject><subject>Boundary layer flow</subject><subject>Heat transfer</subject><subject>Hydrocarbons</subject><subject>Iron oxides</subject><subject>Mining industry</subject><subject>Nanofluids</subject><subject>Parameters</subject><subject>Perfluorocarbons</subject><subject>Porous media</subject><subject>Prandtl number</subject><subject>Rotating disks</subject><subject>Rotation</subject><subject>Thermal analysis</subject><subject>Thermal radiation</subject><subject>Time dependence</subject><subject>Viscosity</subject><issn>0354-9836</issn><issn>2334-7163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpVkDtPwzAYRS0EEqWwMltiTrH9ObYzoohHUQUDZY5cPyqXJC52UsS_J6gsTHc5ulf3IHRNyYKxSt2u3-ollQQYUKieT9CMAfBCUgGnaEag5EWlQJyji5x3hAihlJyhzcvYuRSMbnHoDy4PYauHEHscPe70tndDMLjXffTtGGzGvo1fOB5cwikOE9lvsQ35A7tu46x1dmrBGu9jimPGnbNh7C7Rmddtdld_OUfvD_fr-qlYvT4u67tVYYDIoRCVt5YTxrVwoI0sFTfUbYSnSnBSEc2ATSSz0oD0hOnSUOYrrgTzQgiAObo59u5T_BynK80ujqmfJhvGWUWUhLKcqMWRMinmnJxv9il0On03lDS_Hpv_HuEHOCZmFQ</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Joshi, Vimal</creator><creator>Ram, Paras</creator><creator>Tripathi, Dharmendra</creator><creator>Sharma, Kushal</creator><general>Society of Thermal Engineers of Serbia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>2018</creationdate><title>Numerical investigation of magnetic nanofluids flow over rotating disk embedded in a porous medium</title><author>Joshi, Vimal ; Ram, Paras ; Tripathi, Dharmendra ; Sharma, Kushal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-69fdd4024a6e3ac7584c1eb6f1864090a232c302d7c37f02a5c12f94862f66633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boundary conditions</topic><topic>Boundary layer flow</topic><topic>Heat transfer</topic><topic>Hydrocarbons</topic><topic>Iron oxides</topic><topic>Mining industry</topic><topic>Nanofluids</topic><topic>Parameters</topic><topic>Perfluorocarbons</topic><topic>Porous media</topic><topic>Prandtl number</topic><topic>Rotating disks</topic><topic>Rotation</topic><topic>Thermal analysis</topic><topic>Thermal radiation</topic><topic>Time dependence</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joshi, Vimal</creatorcontrib><creatorcontrib>Ram, Paras</creatorcontrib><creatorcontrib>Tripathi, Dharmendra</creatorcontrib><creatorcontrib>Sharma, Kushal</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Thermal science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joshi, Vimal</au><au>Ram, Paras</au><au>Tripathi, Dharmendra</au><au>Sharma, Kushal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical investigation of magnetic nanofluids flow over rotating disk embedded in a porous medium</atitle><jtitle>Thermal science</jtitle><date>2018</date><risdate>2018</risdate><volume>22</volume><issue>6 Part B</issue><spage>2883</spage><epage>2895</epage><pages>2883-2895</pages><issn>0354-9836</issn><eissn>2334-7163</eissn><abstract>Combined effects of thermal radiation and variable viscosity on a time-dependent boundary-layer flow of magnetic nanofluids over a rotating disk in the presence of the porous medium have been numerically investigated. To carry out the study, hydrocarbon based magnetic nanofluid containing magnetite Fe3O4 particles of 10 nm with magnetic phase concentration of 10% has been taken. For numerical solutions of the modelled system containing the governing equation of the flow, a MATLAB tool ODE45 is employed with shooting technique for the initial guess of the unknown boundary conditions. The flow phenomenon and heat transfer on the plate surface are characterised by various flow parameters such as viscosity variations, unsteady rotation parameter, Prandtl number, and radiation parameter. Also, a comparative thermal analysis has been carried out for magnetic nanofluids having three different bases viz. hydrocarbon, fluorocarbon, and water. Results reveal that heat transfer rate of hydrocarbon base magnetic nanofluids is 73.4511% faster than water base magnetic nanofluids, and 239.7458% faster than fluorocarbon base magnetic nanofluids. This enhanced heat transfer capacity of hydrocarbon base magnetic nanofluids will help in improving the performance of oil and ore extraction drilling systems used in mining industry and other geothermal applications.</abstract><cop>Belgrade</cop><pub>Society of Thermal Engineers of Serbia</pub><doi>10.2298/TSCI170323139J</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0354-9836 |
ispartof | Thermal science, 2018, Vol.22 (6 Part B), p.2883-2895 |
issn | 0354-9836 2334-7163 |
language | eng |
recordid | cdi_proquest_journals_2429087355 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Boundary conditions Boundary layer flow Heat transfer Hydrocarbons Iron oxides Mining industry Nanofluids Parameters Perfluorocarbons Porous media Prandtl number Rotating disks Rotation Thermal analysis Thermal radiation Time dependence Viscosity |
title | Numerical investigation of magnetic nanofluids flow over rotating disk embedded in a porous medium |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20investigation%20of%20magnetic%20nanofluids%20flow%20over%20rotating%20disk%20embedded%20in%20a%20porous%20medium&rft.jtitle=Thermal%20science&rft.au=Joshi,%20Vimal&rft.date=2018&rft.volume=22&rft.issue=6%20Part%20B&rft.spage=2883&rft.epage=2895&rft.pages=2883-2895&rft.issn=0354-9836&rft.eissn=2334-7163&rft_id=info:doi/10.2298/TSCI170323139J&rft_dat=%3Cproquest_cross%3E2429087355%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c307t-69fdd4024a6e3ac7584c1eb6f1864090a232c302d7c37f02a5c12f94862f66633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2429087355&rft_id=info:pmid/&rfr_iscdi=true |