Loading…

Numerical investigation of magnetic nanofluids flow over rotating disk embedded in a porous medium

Combined effects of thermal radiation and variable viscosity on a time-dependent boundary-layer flow of magnetic nanofluids over a rotating disk in the presence of the porous medium have been numerically investigated. To carry out the study, hydrocarbon based magnetic nanofluid containing magnetite...

Full description

Saved in:
Bibliographic Details
Published in:Thermal science 2018, Vol.22 (6 Part B), p.2883-2895
Main Authors: Joshi, Vimal, Ram, Paras, Tripathi, Dharmendra, Sharma, Kushal
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c307t-69fdd4024a6e3ac7584c1eb6f1864090a232c302d7c37f02a5c12f94862f66633
cites
container_end_page 2895
container_issue 6 Part B
container_start_page 2883
container_title Thermal science
container_volume 22
creator Joshi, Vimal
Ram, Paras
Tripathi, Dharmendra
Sharma, Kushal
description Combined effects of thermal radiation and variable viscosity on a time-dependent boundary-layer flow of magnetic nanofluids over a rotating disk in the presence of the porous medium have been numerically investigated. To carry out the study, hydrocarbon based magnetic nanofluid containing magnetite Fe3O4 particles of 10 nm with magnetic phase concentration of 10% has been taken. For numerical solutions of the modelled system containing the governing equation of the flow, a MATLAB tool ODE45 is employed with shooting technique for the initial guess of the unknown boundary conditions. The flow phenomenon and heat transfer on the plate surface are characterised by various flow parameters such as viscosity variations, unsteady rotation parameter, Prandtl number, and radiation parameter. Also, a comparative thermal analysis has been carried out for magnetic nanofluids having three different bases viz. hydrocarbon, fluorocarbon, and water. Results reveal that heat transfer rate of hydrocarbon base magnetic nanofluids is 73.4511% faster than water base magnetic nanofluids, and 239.7458% faster than fluorocarbon base magnetic nanofluids. This enhanced heat transfer capacity of hydrocarbon base magnetic nanofluids will help in improving the performance of oil and ore extraction drilling systems used in mining industry and other geothermal applications.
doi_str_mv 10.2298/TSCI170323139J
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2429087355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429087355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-69fdd4024a6e3ac7584c1eb6f1864090a232c302d7c37f02a5c12f94862f66633</originalsourceid><addsrcrecordid>eNpVkDtPwzAYRS0EEqWwMltiTrH9ObYzoohHUQUDZY5cPyqXJC52UsS_J6gsTHc5ulf3IHRNyYKxSt2u3-ollQQYUKieT9CMAfBCUgGnaEag5EWlQJyji5x3hAihlJyhzcvYuRSMbnHoDy4PYauHEHscPe70tndDMLjXffTtGGzGvo1fOB5cwikOE9lvsQ35A7tu46x1dmrBGu9jimPGnbNh7C7Rmddtdld_OUfvD_fr-qlYvT4u67tVYYDIoRCVt5YTxrVwoI0sFTfUbYSnSnBSEc2ATSSz0oD0hOnSUOYrrgTzQgiAObo59u5T_BynK80ujqmfJhvGWUWUhLKcqMWRMinmnJxv9il0On03lDS_Hpv_HuEHOCZmFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429087355</pqid></control><display><type>article</type><title>Numerical investigation of magnetic nanofluids flow over rotating disk embedded in a porous medium</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Joshi, Vimal ; Ram, Paras ; Tripathi, Dharmendra ; Sharma, Kushal</creator><creatorcontrib>Joshi, Vimal ; Ram, Paras ; Tripathi, Dharmendra ; Sharma, Kushal</creatorcontrib><description>Combined effects of thermal radiation and variable viscosity on a time-dependent boundary-layer flow of magnetic nanofluids over a rotating disk in the presence of the porous medium have been numerically investigated. To carry out the study, hydrocarbon based magnetic nanofluid containing magnetite Fe3O4 particles of 10 nm with magnetic phase concentration of 10% has been taken. For numerical solutions of the modelled system containing the governing equation of the flow, a MATLAB tool ODE45 is employed with shooting technique for the initial guess of the unknown boundary conditions. The flow phenomenon and heat transfer on the plate surface are characterised by various flow parameters such as viscosity variations, unsteady rotation parameter, Prandtl number, and radiation parameter. Also, a comparative thermal analysis has been carried out for magnetic nanofluids having three different bases viz. hydrocarbon, fluorocarbon, and water. Results reveal that heat transfer rate of hydrocarbon base magnetic nanofluids is 73.4511% faster than water base magnetic nanofluids, and 239.7458% faster than fluorocarbon base magnetic nanofluids. This enhanced heat transfer capacity of hydrocarbon base magnetic nanofluids will help in improving the performance of oil and ore extraction drilling systems used in mining industry and other geothermal applications.</description><identifier>ISSN: 0354-9836</identifier><identifier>EISSN: 2334-7163</identifier><identifier>DOI: 10.2298/TSCI170323139J</identifier><language>eng</language><publisher>Belgrade: Society of Thermal Engineers of Serbia</publisher><subject>Boundary conditions ; Boundary layer flow ; Heat transfer ; Hydrocarbons ; Iron oxides ; Mining industry ; Nanofluids ; Parameters ; Perfluorocarbons ; Porous media ; Prandtl number ; Rotating disks ; Rotation ; Thermal analysis ; Thermal radiation ; Time dependence ; Viscosity</subject><ispartof>Thermal science, 2018, Vol.22 (6 Part B), p.2883-2895</ispartof><rights>2018. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-69fdd4024a6e3ac7584c1eb6f1864090a232c302d7c37f02a5c12f94862f66633</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2429087355?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Joshi, Vimal</creatorcontrib><creatorcontrib>Ram, Paras</creatorcontrib><creatorcontrib>Tripathi, Dharmendra</creatorcontrib><creatorcontrib>Sharma, Kushal</creatorcontrib><title>Numerical investigation of magnetic nanofluids flow over rotating disk embedded in a porous medium</title><title>Thermal science</title><description>Combined effects of thermal radiation and variable viscosity on a time-dependent boundary-layer flow of magnetic nanofluids over a rotating disk in the presence of the porous medium have been numerically investigated. To carry out the study, hydrocarbon based magnetic nanofluid containing magnetite Fe3O4 particles of 10 nm with magnetic phase concentration of 10% has been taken. For numerical solutions of the modelled system containing the governing equation of the flow, a MATLAB tool ODE45 is employed with shooting technique for the initial guess of the unknown boundary conditions. The flow phenomenon and heat transfer on the plate surface are characterised by various flow parameters such as viscosity variations, unsteady rotation parameter, Prandtl number, and radiation parameter. Also, a comparative thermal analysis has been carried out for magnetic nanofluids having three different bases viz. hydrocarbon, fluorocarbon, and water. Results reveal that heat transfer rate of hydrocarbon base magnetic nanofluids is 73.4511% faster than water base magnetic nanofluids, and 239.7458% faster than fluorocarbon base magnetic nanofluids. This enhanced heat transfer capacity of hydrocarbon base magnetic nanofluids will help in improving the performance of oil and ore extraction drilling systems used in mining industry and other geothermal applications.</description><subject>Boundary conditions</subject><subject>Boundary layer flow</subject><subject>Heat transfer</subject><subject>Hydrocarbons</subject><subject>Iron oxides</subject><subject>Mining industry</subject><subject>Nanofluids</subject><subject>Parameters</subject><subject>Perfluorocarbons</subject><subject>Porous media</subject><subject>Prandtl number</subject><subject>Rotating disks</subject><subject>Rotation</subject><subject>Thermal analysis</subject><subject>Thermal radiation</subject><subject>Time dependence</subject><subject>Viscosity</subject><issn>0354-9836</issn><issn>2334-7163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpVkDtPwzAYRS0EEqWwMltiTrH9ObYzoohHUQUDZY5cPyqXJC52UsS_J6gsTHc5ulf3IHRNyYKxSt2u3-ollQQYUKieT9CMAfBCUgGnaEag5EWlQJyji5x3hAihlJyhzcvYuRSMbnHoDy4PYauHEHscPe70tndDMLjXffTtGGzGvo1fOB5cwikOE9lvsQ35A7tu46x1dmrBGu9jimPGnbNh7C7Rmddtdld_OUfvD_fr-qlYvT4u67tVYYDIoRCVt5YTxrVwoI0sFTfUbYSnSnBSEc2ATSSz0oD0hOnSUOYrrgTzQgiAObo59u5T_BynK80ujqmfJhvGWUWUhLKcqMWRMinmnJxv9il0On03lDS_Hpv_HuEHOCZmFQ</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Joshi, Vimal</creator><creator>Ram, Paras</creator><creator>Tripathi, Dharmendra</creator><creator>Sharma, Kushal</creator><general>Society of Thermal Engineers of Serbia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>2018</creationdate><title>Numerical investigation of magnetic nanofluids flow over rotating disk embedded in a porous medium</title><author>Joshi, Vimal ; Ram, Paras ; Tripathi, Dharmendra ; Sharma, Kushal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-69fdd4024a6e3ac7584c1eb6f1864090a232c302d7c37f02a5c12f94862f66633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boundary conditions</topic><topic>Boundary layer flow</topic><topic>Heat transfer</topic><topic>Hydrocarbons</topic><topic>Iron oxides</topic><topic>Mining industry</topic><topic>Nanofluids</topic><topic>Parameters</topic><topic>Perfluorocarbons</topic><topic>Porous media</topic><topic>Prandtl number</topic><topic>Rotating disks</topic><topic>Rotation</topic><topic>Thermal analysis</topic><topic>Thermal radiation</topic><topic>Time dependence</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joshi, Vimal</creatorcontrib><creatorcontrib>Ram, Paras</creatorcontrib><creatorcontrib>Tripathi, Dharmendra</creatorcontrib><creatorcontrib>Sharma, Kushal</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Thermal science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joshi, Vimal</au><au>Ram, Paras</au><au>Tripathi, Dharmendra</au><au>Sharma, Kushal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical investigation of magnetic nanofluids flow over rotating disk embedded in a porous medium</atitle><jtitle>Thermal science</jtitle><date>2018</date><risdate>2018</risdate><volume>22</volume><issue>6 Part B</issue><spage>2883</spage><epage>2895</epage><pages>2883-2895</pages><issn>0354-9836</issn><eissn>2334-7163</eissn><abstract>Combined effects of thermal radiation and variable viscosity on a time-dependent boundary-layer flow of magnetic nanofluids over a rotating disk in the presence of the porous medium have been numerically investigated. To carry out the study, hydrocarbon based magnetic nanofluid containing magnetite Fe3O4 particles of 10 nm with magnetic phase concentration of 10% has been taken. For numerical solutions of the modelled system containing the governing equation of the flow, a MATLAB tool ODE45 is employed with shooting technique for the initial guess of the unknown boundary conditions. The flow phenomenon and heat transfer on the plate surface are characterised by various flow parameters such as viscosity variations, unsteady rotation parameter, Prandtl number, and radiation parameter. Also, a comparative thermal analysis has been carried out for magnetic nanofluids having three different bases viz. hydrocarbon, fluorocarbon, and water. Results reveal that heat transfer rate of hydrocarbon base magnetic nanofluids is 73.4511% faster than water base magnetic nanofluids, and 239.7458% faster than fluorocarbon base magnetic nanofluids. This enhanced heat transfer capacity of hydrocarbon base magnetic nanofluids will help in improving the performance of oil and ore extraction drilling systems used in mining industry and other geothermal applications.</abstract><cop>Belgrade</cop><pub>Society of Thermal Engineers of Serbia</pub><doi>10.2298/TSCI170323139J</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0354-9836
ispartof Thermal science, 2018, Vol.22 (6 Part B), p.2883-2895
issn 0354-9836
2334-7163
language eng
recordid cdi_proquest_journals_2429087355
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Boundary conditions
Boundary layer flow
Heat transfer
Hydrocarbons
Iron oxides
Mining industry
Nanofluids
Parameters
Perfluorocarbons
Porous media
Prandtl number
Rotating disks
Rotation
Thermal analysis
Thermal radiation
Time dependence
Viscosity
title Numerical investigation of magnetic nanofluids flow over rotating disk embedded in a porous medium
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20investigation%20of%20magnetic%20nanofluids%20flow%20over%20rotating%20disk%20embedded%20in%20a%20porous%20medium&rft.jtitle=Thermal%20science&rft.au=Joshi,%20Vimal&rft.date=2018&rft.volume=22&rft.issue=6%20Part%20B&rft.spage=2883&rft.epage=2895&rft.pages=2883-2895&rft.issn=0354-9836&rft.eissn=2334-7163&rft_id=info:doi/10.2298/TSCI170323139J&rft_dat=%3Cproquest_cross%3E2429087355%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c307t-69fdd4024a6e3ac7584c1eb6f1864090a232c302d7c37f02a5c12f94862f66633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2429087355&rft_id=info:pmid/&rfr_iscdi=true