Loading…

Analytical solutions of differential-difference sine-Gordon equation

In modern textile engineering, non-linear differential-difference equations are often used to describe some phenomena arising in heat/electron conduction and flow in carbon nanotubes. In this paper, we extend the variable coefficient Jacobian elliptic function method to solve non-linear differential...

Full description

Saved in:
Bibliographic Details
Published in:Thermal science 2017, Vol.21 (4), p.1701-1705
Main Authors: Ding, Da-Jiang, Jin, Di-Qing, Dai, Chao-Qing
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c307t-f0b7af12e716a50a3b42a85a7cc7961c66de8294cbee8210d03149800496970d3
cites
container_end_page 1705
container_issue 4
container_start_page 1701
container_title Thermal science
container_volume 21
creator Ding, Da-Jiang
Jin, Di-Qing
Dai, Chao-Qing
description In modern textile engineering, non-linear differential-difference equations are often used to describe some phenomena arising in heat/electron conduction and flow in carbon nanotubes. In this paper, we extend the variable coefficient Jacobian elliptic function method to solve non-linear differential-difference sine-Gordon equation by introducing a negative power and some variable coefficients in the ansatz, and derive two series of Jacobian elliptic function solutions. When the modulus of Jacobian elliptic function approaches to 1, some solutions can degenerate into some known solutions in the literature. nema
doi_str_mv 10.2298/TSCI160809056D
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2429092535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429092535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-f0b7af12e716a50a3b42a85a7cc7961c66de8294cbee8210d03149800496970d3</originalsourceid><addsrcrecordid>eNpVUDtPwzAYtBBIlMLKHInZ5fMjfoxVCqVSJQbKbDmOLaUKcWsnQ_89qUoHptNJd6e7Q-iZwIJSrV53X9WGCFCgoRSrGzSjjHEsiWC3aAas5FgrJu7RQ857ACGUkjO0Wva2Ow2ts12RYzcObexzEUPRtCH45PuhtR2-EueL3PYer2NqYl_442jPhkd0F2yX_dMfztH3-9uu-sDbz_WmWm6xYyAHHKCWNhDqp062BMtqTq0qrXROakGcEI1XVHNX-wkJNMAI1wqAa6ElNGyOXi65hxSPo8-D2ccxTQOyoZxq0LRk5aRaXFQuxZyTD-aQ2h-bToaAOT9l_j_FfgHuL1sz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429092535</pqid></control><display><type>article</type><title>Analytical solutions of differential-difference sine-Gordon equation</title><source>Publicly Available Content (ProQuest)</source><source>IngentaConnect Journals</source><creator>Ding, Da-Jiang ; Jin, Di-Qing ; Dai, Chao-Qing</creator><creatorcontrib>Ding, Da-Jiang ; Jin, Di-Qing ; Dai, Chao-Qing</creatorcontrib><description>In modern textile engineering, non-linear differential-difference equations are often used to describe some phenomena arising in heat/electron conduction and flow in carbon nanotubes. In this paper, we extend the variable coefficient Jacobian elliptic function method to solve non-linear differential-difference sine-Gordon equation by introducing a negative power and some variable coefficients in the ansatz, and derive two series of Jacobian elliptic function solutions. When the modulus of Jacobian elliptic function approaches to 1, some solutions can degenerate into some known solutions in the literature. nema</description><identifier>ISSN: 0354-9836</identifier><identifier>EISSN: 2334-7163</identifier><identifier>DOI: 10.2298/TSCI160809056D</identifier><language>eng</language><publisher>Belgrade: Society of Thermal Engineers of Serbia</publisher><subject>Carbon ; Carbon nanotubes ; Conduction heating ; Difference equations ; Differential equations ; Exact solutions ; Jacobian elliptic functions ; Mathematical analysis ; Nonlinear equations ; Trigonometric functions</subject><ispartof>Thermal science, 2017, Vol.21 (4), p.1701-1705</ispartof><rights>2017. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-f0b7af12e716a50a3b42a85a7cc7961c66de8294cbee8210d03149800496970d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2429092535?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4009,25732,27902,27903,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Ding, Da-Jiang</creatorcontrib><creatorcontrib>Jin, Di-Qing</creatorcontrib><creatorcontrib>Dai, Chao-Qing</creatorcontrib><title>Analytical solutions of differential-difference sine-Gordon equation</title><title>Thermal science</title><description>In modern textile engineering, non-linear differential-difference equations are often used to describe some phenomena arising in heat/electron conduction and flow in carbon nanotubes. In this paper, we extend the variable coefficient Jacobian elliptic function method to solve non-linear differential-difference sine-Gordon equation by introducing a negative power and some variable coefficients in the ansatz, and derive two series of Jacobian elliptic function solutions. When the modulus of Jacobian elliptic function approaches to 1, some solutions can degenerate into some known solutions in the literature. nema</description><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Conduction heating</subject><subject>Difference equations</subject><subject>Differential equations</subject><subject>Exact solutions</subject><subject>Jacobian elliptic functions</subject><subject>Mathematical analysis</subject><subject>Nonlinear equations</subject><subject>Trigonometric functions</subject><issn>0354-9836</issn><issn>2334-7163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpVUDtPwzAYtBBIlMLKHInZ5fMjfoxVCqVSJQbKbDmOLaUKcWsnQ_89qUoHptNJd6e7Q-iZwIJSrV53X9WGCFCgoRSrGzSjjHEsiWC3aAas5FgrJu7RQ857ACGUkjO0Wva2Ow2ts12RYzcObexzEUPRtCH45PuhtR2-EueL3PYer2NqYl_442jPhkd0F2yX_dMfztH3-9uu-sDbz_WmWm6xYyAHHKCWNhDqp062BMtqTq0qrXROakGcEI1XVHNX-wkJNMAI1wqAa6ElNGyOXi65hxSPo8-D2ccxTQOyoZxq0LRk5aRaXFQuxZyTD-aQ2h-bToaAOT9l_j_FfgHuL1sz</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Ding, Da-Jiang</creator><creator>Jin, Di-Qing</creator><creator>Dai, Chao-Qing</creator><general>Society of Thermal Engineers of Serbia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>2017</creationdate><title>Analytical solutions of differential-difference sine-Gordon equation</title><author>Ding, Da-Jiang ; Jin, Di-Qing ; Dai, Chao-Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-f0b7af12e716a50a3b42a85a7cc7961c66de8294cbee8210d03149800496970d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Conduction heating</topic><topic>Difference equations</topic><topic>Differential equations</topic><topic>Exact solutions</topic><topic>Jacobian elliptic functions</topic><topic>Mathematical analysis</topic><topic>Nonlinear equations</topic><topic>Trigonometric functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Da-Jiang</creatorcontrib><creatorcontrib>Jin, Di-Qing</creatorcontrib><creatorcontrib>Dai, Chao-Qing</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials science collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Thermal science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Da-Jiang</au><au>Jin, Di-Qing</au><au>Dai, Chao-Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical solutions of differential-difference sine-Gordon equation</atitle><jtitle>Thermal science</jtitle><date>2017</date><risdate>2017</risdate><volume>21</volume><issue>4</issue><spage>1701</spage><epage>1705</epage><pages>1701-1705</pages><issn>0354-9836</issn><eissn>2334-7163</eissn><abstract>In modern textile engineering, non-linear differential-difference equations are often used to describe some phenomena arising in heat/electron conduction and flow in carbon nanotubes. In this paper, we extend the variable coefficient Jacobian elliptic function method to solve non-linear differential-difference sine-Gordon equation by introducing a negative power and some variable coefficients in the ansatz, and derive two series of Jacobian elliptic function solutions. When the modulus of Jacobian elliptic function approaches to 1, some solutions can degenerate into some known solutions in the literature. nema</abstract><cop>Belgrade</cop><pub>Society of Thermal Engineers of Serbia</pub><doi>10.2298/TSCI160809056D</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0354-9836
ispartof Thermal science, 2017, Vol.21 (4), p.1701-1705
issn 0354-9836
2334-7163
language eng
recordid cdi_proquest_journals_2429092535
source Publicly Available Content (ProQuest); IngentaConnect Journals
subjects Carbon
Carbon nanotubes
Conduction heating
Difference equations
Differential equations
Exact solutions
Jacobian elliptic functions
Mathematical analysis
Nonlinear equations
Trigonometric functions
title Analytical solutions of differential-difference sine-Gordon equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A35%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20solutions%20of%20differential-difference%20sine-Gordon%20equation&rft.jtitle=Thermal%20science&rft.au=Ding,%20Da-Jiang&rft.date=2017&rft.volume=21&rft.issue=4&rft.spage=1701&rft.epage=1705&rft.pages=1701-1705&rft.issn=0354-9836&rft.eissn=2334-7163&rft_id=info:doi/10.2298/TSCI160809056D&rft_dat=%3Cproquest_cross%3E2429092535%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c307t-f0b7af12e716a50a3b42a85a7cc7961c66de8294cbee8210d03149800496970d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2429092535&rft_id=info:pmid/&rfr_iscdi=true