Loading…
Analytical solutions of differential-difference sine-Gordon equation
In modern textile engineering, non-linear differential-difference equations are often used to describe some phenomena arising in heat/electron conduction and flow in carbon nanotubes. In this paper, we extend the variable coefficient Jacobian elliptic function method to solve non-linear differential...
Saved in:
Published in: | Thermal science 2017, Vol.21 (4), p.1701-1705 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c307t-f0b7af12e716a50a3b42a85a7cc7961c66de8294cbee8210d03149800496970d3 |
---|---|
cites | |
container_end_page | 1705 |
container_issue | 4 |
container_start_page | 1701 |
container_title | Thermal science |
container_volume | 21 |
creator | Ding, Da-Jiang Jin, Di-Qing Dai, Chao-Qing |
description | In modern textile engineering, non-linear differential-difference equations are often used to describe some phenomena arising in heat/electron conduction and flow in carbon nanotubes. In this paper, we extend the variable coefficient Jacobian elliptic function method to solve non-linear differential-difference sine-Gordon equation by introducing a negative power and some variable coefficients in the ansatz, and derive two series of Jacobian elliptic function solutions. When the modulus of Jacobian elliptic function approaches to 1, some solutions can degenerate into some known solutions in the literature.
nema |
doi_str_mv | 10.2298/TSCI160809056D |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2429092535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429092535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-f0b7af12e716a50a3b42a85a7cc7961c66de8294cbee8210d03149800496970d3</originalsourceid><addsrcrecordid>eNpVUDtPwzAYtBBIlMLKHInZ5fMjfoxVCqVSJQbKbDmOLaUKcWsnQ_89qUoHptNJd6e7Q-iZwIJSrV53X9WGCFCgoRSrGzSjjHEsiWC3aAas5FgrJu7RQ857ACGUkjO0Wva2Ow2ts12RYzcObexzEUPRtCH45PuhtR2-EueL3PYer2NqYl_442jPhkd0F2yX_dMfztH3-9uu-sDbz_WmWm6xYyAHHKCWNhDqp062BMtqTq0qrXROakGcEI1XVHNX-wkJNMAI1wqAa6ElNGyOXi65hxSPo8-D2ccxTQOyoZxq0LRk5aRaXFQuxZyTD-aQ2h-bToaAOT9l_j_FfgHuL1sz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429092535</pqid></control><display><type>article</type><title>Analytical solutions of differential-difference sine-Gordon equation</title><source>Publicly Available Content (ProQuest)</source><source>IngentaConnect Journals</source><creator>Ding, Da-Jiang ; Jin, Di-Qing ; Dai, Chao-Qing</creator><creatorcontrib>Ding, Da-Jiang ; Jin, Di-Qing ; Dai, Chao-Qing</creatorcontrib><description>In modern textile engineering, non-linear differential-difference equations are often used to describe some phenomena arising in heat/electron conduction and flow in carbon nanotubes. In this paper, we extend the variable coefficient Jacobian elliptic function method to solve non-linear differential-difference sine-Gordon equation by introducing a negative power and some variable coefficients in the ansatz, and derive two series of Jacobian elliptic function solutions. When the modulus of Jacobian elliptic function approaches to 1, some solutions can degenerate into some known solutions in the literature.
nema</description><identifier>ISSN: 0354-9836</identifier><identifier>EISSN: 2334-7163</identifier><identifier>DOI: 10.2298/TSCI160809056D</identifier><language>eng</language><publisher>Belgrade: Society of Thermal Engineers of Serbia</publisher><subject>Carbon ; Carbon nanotubes ; Conduction heating ; Difference equations ; Differential equations ; Exact solutions ; Jacobian elliptic functions ; Mathematical analysis ; Nonlinear equations ; Trigonometric functions</subject><ispartof>Thermal science, 2017, Vol.21 (4), p.1701-1705</ispartof><rights>2017. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-f0b7af12e716a50a3b42a85a7cc7961c66de8294cbee8210d03149800496970d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2429092535?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4009,25732,27902,27903,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Ding, Da-Jiang</creatorcontrib><creatorcontrib>Jin, Di-Qing</creatorcontrib><creatorcontrib>Dai, Chao-Qing</creatorcontrib><title>Analytical solutions of differential-difference sine-Gordon equation</title><title>Thermal science</title><description>In modern textile engineering, non-linear differential-difference equations are often used to describe some phenomena arising in heat/electron conduction and flow in carbon nanotubes. In this paper, we extend the variable coefficient Jacobian elliptic function method to solve non-linear differential-difference sine-Gordon equation by introducing a negative power and some variable coefficients in the ansatz, and derive two series of Jacobian elliptic function solutions. When the modulus of Jacobian elliptic function approaches to 1, some solutions can degenerate into some known solutions in the literature.
nema</description><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Conduction heating</subject><subject>Difference equations</subject><subject>Differential equations</subject><subject>Exact solutions</subject><subject>Jacobian elliptic functions</subject><subject>Mathematical analysis</subject><subject>Nonlinear equations</subject><subject>Trigonometric functions</subject><issn>0354-9836</issn><issn>2334-7163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpVUDtPwzAYtBBIlMLKHInZ5fMjfoxVCqVSJQbKbDmOLaUKcWsnQ_89qUoHptNJd6e7Q-iZwIJSrV53X9WGCFCgoRSrGzSjjHEsiWC3aAas5FgrJu7RQ857ACGUkjO0Wva2Ow2ts12RYzcObexzEUPRtCH45PuhtR2-EueL3PYer2NqYl_442jPhkd0F2yX_dMfztH3-9uu-sDbz_WmWm6xYyAHHKCWNhDqp062BMtqTq0qrXROakGcEI1XVHNX-wkJNMAI1wqAa6ElNGyOXi65hxSPo8-D2ccxTQOyoZxq0LRk5aRaXFQuxZyTD-aQ2h-bToaAOT9l_j_FfgHuL1sz</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Ding, Da-Jiang</creator><creator>Jin, Di-Qing</creator><creator>Dai, Chao-Qing</creator><general>Society of Thermal Engineers of Serbia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>2017</creationdate><title>Analytical solutions of differential-difference sine-Gordon equation</title><author>Ding, Da-Jiang ; Jin, Di-Qing ; Dai, Chao-Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-f0b7af12e716a50a3b42a85a7cc7961c66de8294cbee8210d03149800496970d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Conduction heating</topic><topic>Difference equations</topic><topic>Differential equations</topic><topic>Exact solutions</topic><topic>Jacobian elliptic functions</topic><topic>Mathematical analysis</topic><topic>Nonlinear equations</topic><topic>Trigonometric functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Da-Jiang</creatorcontrib><creatorcontrib>Jin, Di-Qing</creatorcontrib><creatorcontrib>Dai, Chao-Qing</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials science collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Thermal science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Da-Jiang</au><au>Jin, Di-Qing</au><au>Dai, Chao-Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical solutions of differential-difference sine-Gordon equation</atitle><jtitle>Thermal science</jtitle><date>2017</date><risdate>2017</risdate><volume>21</volume><issue>4</issue><spage>1701</spage><epage>1705</epage><pages>1701-1705</pages><issn>0354-9836</issn><eissn>2334-7163</eissn><abstract>In modern textile engineering, non-linear differential-difference equations are often used to describe some phenomena arising in heat/electron conduction and flow in carbon nanotubes. In this paper, we extend the variable coefficient Jacobian elliptic function method to solve non-linear differential-difference sine-Gordon equation by introducing a negative power and some variable coefficients in the ansatz, and derive two series of Jacobian elliptic function solutions. When the modulus of Jacobian elliptic function approaches to 1, some solutions can degenerate into some known solutions in the literature.
nema</abstract><cop>Belgrade</cop><pub>Society of Thermal Engineers of Serbia</pub><doi>10.2298/TSCI160809056D</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0354-9836 |
ispartof | Thermal science, 2017, Vol.21 (4), p.1701-1705 |
issn | 0354-9836 2334-7163 |
language | eng |
recordid | cdi_proquest_journals_2429092535 |
source | Publicly Available Content (ProQuest); IngentaConnect Journals |
subjects | Carbon Carbon nanotubes Conduction heating Difference equations Differential equations Exact solutions Jacobian elliptic functions Mathematical analysis Nonlinear equations Trigonometric functions |
title | Analytical solutions of differential-difference sine-Gordon equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A35%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20solutions%20of%20differential-difference%20sine-Gordon%20equation&rft.jtitle=Thermal%20science&rft.au=Ding,%20Da-Jiang&rft.date=2017&rft.volume=21&rft.issue=4&rft.spage=1701&rft.epage=1705&rft.pages=1701-1705&rft.issn=0354-9836&rft.eissn=2334-7163&rft_id=info:doi/10.2298/TSCI160809056D&rft_dat=%3Cproquest_cross%3E2429092535%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c307t-f0b7af12e716a50a3b42a85a7cc7961c66de8294cbee8210d03149800496970d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2429092535&rft_id=info:pmid/&rfr_iscdi=true |