Loading…

Application of blade tip shroud brush seal to improve the aerodynamic performance of turbine stage

The blade tip shroud brush seal is applied to replace the labyrinth seal for the aerodynamic performance improvement of turbine stage. The leakage flow characteristics of the brush seal are numerically predicted by using the Reynolds-Averaged Navier–Stokes equations and non-linear Darcian porous med...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy Journal of power and energy, 2020-09, Vol.234 (6), p.777-794
Main Authors: Ma, Dengqian, Li, Jun, Zhang, Yuanqiao, Li, Zhigang, Yan, Xin, Song, Liming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The blade tip shroud brush seal is applied to replace the labyrinth seal for the aerodynamic performance improvement of turbine stage. The leakage flow characteristics of the brush seal are numerically predicted by using the Reynolds-Averaged Navier–Stokes equations and non-linear Darcian porous medium model. The numerical leakage flow rate of the brush seal is in well agreement with the experimental data. The last and first long teeth of the labyrinth seal were designed to bristle pack named as the postposed and preposed brush seals based on the 1.5 turbine stage. The leakage flow rate and aerodynamic performance of the turbine stage with blade tip shroud labyrinth seal and brush seal are numerically investigated. The effect of the sealing clearance between bristle pack and tip shroud on the aerodynamic performance of turbine stage is conducted which ranged from 0 mm to 0.4 mm. The axial deflection of the bristle pack is analyzed with consideration of the aerodynamic forces and contact frictional force. The obtained results show that the leakage flow rate of the tip shroud brush seals with bristle tip 0.4 mm clearance which decreases by up to 18% in comparison with the labyrinth seal, and the aerodynamic efficiency increases by 0.6%. Compared to the tip labyrinth seal, tip shroud brush seals can decrease the relative deflection angle of exit flow. This flow behavior results in reducing the mixing loss between the tip leakage flow and mainstream. The similar axial deflection of the bristle pack for two kinds of brush seals is observed at the same sealing clearance. The deflection of the bristle pack under the function of the aerodynamic forces is protected by the backing plate. This work provides the theoretical basis and technical support for the brush seal application in the turbine industries.
ISSN:0957-6509
2041-2967
DOI:10.1177/0957650919883153