Loading…
Data Compatibility Issues: How to Prevent Miscoding and Dropped Observations When Using U.S. Office of Personnel Management Data Sets
A critical comparison of the agency identifier codes in the Federal Employee Viewpoint Survey (FEVS) and FedScope data sets reveals three distinct types of issues will occur when researchers attempt to merge the data sets: (a) a single agency is assigned different codes across data sets; (b) a singl...
Saved in:
Published in: | Review of public personnel administration 2020-12, Vol.40 (4), p.743-753 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c309t-58fe47f43e3da8d7d30300d5fd2fe57998ded10835c6011ad1b4e2cef780d1e93 |
---|---|
cites | cdi_FETCH-LOGICAL-c309t-58fe47f43e3da8d7d30300d5fd2fe57998ded10835c6011ad1b4e2cef780d1e93 |
container_end_page | 753 |
container_issue | 4 |
container_start_page | 743 |
container_title | Review of public personnel administration |
container_volume | 40 |
creator | Alteri, Ashley M. |
description | A critical comparison of the agency identifier codes in the Federal Employee Viewpoint Survey (FEVS) and FedScope data sets reveals three distinct types of issues will occur when researchers attempt to merge the data sets: (a) a single agency is assigned different codes across data sets; (b) a single code is assigned to different agencies across data sets; and (c) a single code is assigned to two or more agencies in the FEVS data set and a separate agency in the FedScope data set. Between 2013 and 2016, these issues are present in almost all major federal departments. Compatibility issues between the agency identifiers could cause the user to drop observations unnecessarily or unknowingly combine two different agencies’ data improperly. If uncorrected, these issues will distort the analysis of studies that rely on this combination of data. However, researchers can correct for this issue and still use Office of Personnel Management (OPM) identifiers to combine data across multiple data sets. |
doi_str_mv | 10.1177/0734371X20904998 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2429414726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0734371X20904998</sage_id><sourcerecordid>2429414726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-58fe47f43e3da8d7d30300d5fd2fe57998ded10835c6011ad1b4e2cef780d1e93</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKt7lwHXU_NsZtxJfbTQ0kItdjekk5s6pU3GZFT6A_zfzlhBEFzdxfnOuZyD0CUlPUqVuiaKC67okpGMiCxLj1CHSskSJbPlMeq0ctLqp-gsxg0hlAmpOujzTtcaD_yu0nW5KrdlvcejGN8g3uCh_8C1x7MA7-BqPClj4U3p1lg7g--CryoweLqKEN4bs3cRP7-Aw4vYMovevIen1pYFYG_xDEL0zsEWT7TTa9i1id-_51DHc3Ri9TbCxc_tosXD_dNgmIynj6PB7TgpOMnqRKYWhLKCAzc6Ncpwwgkx0hpmQaqmtQFDScpl0SeUakNXAlgBVqXEUMh4F10dcqvgX5uOdb7xb8E1L3MmWCaoUKzfUORAFcHHGMDmVSh3OuxzSvJ27Pzv2I0lOVhi0-039F_-CxNYf7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429414726</pqid></control><display><type>article</type><title>Data Compatibility Issues: How to Prevent Miscoding and Dropped Observations When Using U.S. Office of Personnel Management Data Sets</title><source>Nexis UK</source><source>Worldwide Political Science Abstracts</source><source>Sage Journals Online</source><creator>Alteri, Ashley M.</creator><creatorcontrib>Alteri, Ashley M.</creatorcontrib><description>A critical comparison of the agency identifier codes in the Federal Employee Viewpoint Survey (FEVS) and FedScope data sets reveals three distinct types of issues will occur when researchers attempt to merge the data sets: (a) a single agency is assigned different codes across data sets; (b) a single code is assigned to different agencies across data sets; and (c) a single code is assigned to two or more agencies in the FEVS data set and a separate agency in the FedScope data set. Between 2013 and 2016, these issues are present in almost all major federal departments. Compatibility issues between the agency identifiers could cause the user to drop observations unnecessarily or unknowingly combine two different agencies’ data improperly. If uncorrected, these issues will distort the analysis of studies that rely on this combination of data. However, researchers can correct for this issue and still use Office of Personnel Management (OPM) identifiers to combine data across multiple data sets.</description><identifier>ISSN: 0734-371X</identifier><identifier>EISSN: 1552-759X</identifier><identifier>DOI: 10.1177/0734371X20904998</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Data ; Datasets ; Federal employees ; Longitudinal studies ; Personnel management ; Researchers</subject><ispartof>Review of public personnel administration, 2020-12, Vol.40 (4), p.743-753</ispartof><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-58fe47f43e3da8d7d30300d5fd2fe57998ded10835c6011ad1b4e2cef780d1e93</citedby><cites>FETCH-LOGICAL-c309t-58fe47f43e3da8d7d30300d5fd2fe57998ded10835c6011ad1b4e2cef780d1e93</cites><orcidid>0000-0001-7701-3182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,79364</link.rule.ids></links><search><creatorcontrib>Alteri, Ashley M.</creatorcontrib><title>Data Compatibility Issues: How to Prevent Miscoding and Dropped Observations When Using U.S. Office of Personnel Management Data Sets</title><title>Review of public personnel administration</title><description>A critical comparison of the agency identifier codes in the Federal Employee Viewpoint Survey (FEVS) and FedScope data sets reveals three distinct types of issues will occur when researchers attempt to merge the data sets: (a) a single agency is assigned different codes across data sets; (b) a single code is assigned to different agencies across data sets; and (c) a single code is assigned to two or more agencies in the FEVS data set and a separate agency in the FedScope data set. Between 2013 and 2016, these issues are present in almost all major federal departments. Compatibility issues between the agency identifiers could cause the user to drop observations unnecessarily or unknowingly combine two different agencies’ data improperly. If uncorrected, these issues will distort the analysis of studies that rely on this combination of data. However, researchers can correct for this issue and still use Office of Personnel Management (OPM) identifiers to combine data across multiple data sets.</description><subject>Data</subject><subject>Datasets</subject><subject>Federal employees</subject><subject>Longitudinal studies</subject><subject>Personnel management</subject><subject>Researchers</subject><issn>0734-371X</issn><issn>1552-759X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>7UB</sourceid><recordid>eNp1kEtLAzEUhYMoWKt7lwHXU_NsZtxJfbTQ0kItdjekk5s6pU3GZFT6A_zfzlhBEFzdxfnOuZyD0CUlPUqVuiaKC67okpGMiCxLj1CHSskSJbPlMeq0ctLqp-gsxg0hlAmpOujzTtcaD_yu0nW5KrdlvcejGN8g3uCh_8C1x7MA7-BqPClj4U3p1lg7g--CryoweLqKEN4bs3cRP7-Aw4vYMovevIen1pYFYG_xDEL0zsEWT7TTa9i1id-_51DHc3Ri9TbCxc_tosXD_dNgmIynj6PB7TgpOMnqRKYWhLKCAzc6Ncpwwgkx0hpmQaqmtQFDScpl0SeUakNXAlgBVqXEUMh4F10dcqvgX5uOdb7xb8E1L3MmWCaoUKzfUORAFcHHGMDmVSh3OuxzSvJ27Pzv2I0lOVhi0-039F_-CxNYf7s</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Alteri, Ashley M.</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UB</scope><orcidid>https://orcid.org/0000-0001-7701-3182</orcidid></search><sort><creationdate>202012</creationdate><title>Data Compatibility Issues: How to Prevent Miscoding and Dropped Observations When Using U.S. Office of Personnel Management Data Sets</title><author>Alteri, Ashley M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-58fe47f43e3da8d7d30300d5fd2fe57998ded10835c6011ad1b4e2cef780d1e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Data</topic><topic>Datasets</topic><topic>Federal employees</topic><topic>Longitudinal studies</topic><topic>Personnel management</topic><topic>Researchers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alteri, Ashley M.</creatorcontrib><collection>CrossRef</collection><collection>Worldwide Political Science Abstracts</collection><jtitle>Review of public personnel administration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alteri, Ashley M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data Compatibility Issues: How to Prevent Miscoding and Dropped Observations When Using U.S. Office of Personnel Management Data Sets</atitle><jtitle>Review of public personnel administration</jtitle><date>2020-12</date><risdate>2020</risdate><volume>40</volume><issue>4</issue><spage>743</spage><epage>753</epage><pages>743-753</pages><issn>0734-371X</issn><eissn>1552-759X</eissn><abstract>A critical comparison of the agency identifier codes in the Federal Employee Viewpoint Survey (FEVS) and FedScope data sets reveals three distinct types of issues will occur when researchers attempt to merge the data sets: (a) a single agency is assigned different codes across data sets; (b) a single code is assigned to different agencies across data sets; and (c) a single code is assigned to two or more agencies in the FEVS data set and a separate agency in the FedScope data set. Between 2013 and 2016, these issues are present in almost all major federal departments. Compatibility issues between the agency identifiers could cause the user to drop observations unnecessarily or unknowingly combine two different agencies’ data improperly. If uncorrected, these issues will distort the analysis of studies that rely on this combination of data. However, researchers can correct for this issue and still use Office of Personnel Management (OPM) identifiers to combine data across multiple data sets.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.1177/0734371X20904998</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7701-3182</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0734-371X |
ispartof | Review of public personnel administration, 2020-12, Vol.40 (4), p.743-753 |
issn | 0734-371X 1552-759X |
language | eng |
recordid | cdi_proquest_journals_2429414726 |
source | Nexis UK; Worldwide Political Science Abstracts; Sage Journals Online |
subjects | Data Datasets Federal employees Longitudinal studies Personnel management Researchers |
title | Data Compatibility Issues: How to Prevent Miscoding and Dropped Observations When Using U.S. Office of Personnel Management Data Sets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A10%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20Compatibility%20Issues:%20How%20to%20Prevent%20Miscoding%20and%20Dropped%20Observations%20When%20Using%20U.S.%20Office%20of%20Personnel%20Management%20Data%20Sets&rft.jtitle=Review%20of%20public%20personnel%20administration&rft.au=Alteri,%20Ashley%20M.&rft.date=2020-12&rft.volume=40&rft.issue=4&rft.spage=743&rft.epage=753&rft.pages=743-753&rft.issn=0734-371X&rft.eissn=1552-759X&rft_id=info:doi/10.1177/0734371X20904998&rft_dat=%3Cproquest_cross%3E2429414726%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c309t-58fe47f43e3da8d7d30300d5fd2fe57998ded10835c6011ad1b4e2cef780d1e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2429414726&rft_id=info:pmid/&rft_sage_id=10.1177_0734371X20904998&rfr_iscdi=true |