Loading…

Data Compatibility Issues: How to Prevent Miscoding and Dropped Observations When Using U.S. Office of Personnel Management Data Sets

A critical comparison of the agency identifier codes in the Federal Employee Viewpoint Survey (FEVS) and FedScope data sets reveals three distinct types of issues will occur when researchers attempt to merge the data sets: (a) a single agency is assigned different codes across data sets; (b) a singl...

Full description

Saved in:
Bibliographic Details
Published in:Review of public personnel administration 2020-12, Vol.40 (4), p.743-753
Main Author: Alteri, Ashley M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c309t-58fe47f43e3da8d7d30300d5fd2fe57998ded10835c6011ad1b4e2cef780d1e93
cites cdi_FETCH-LOGICAL-c309t-58fe47f43e3da8d7d30300d5fd2fe57998ded10835c6011ad1b4e2cef780d1e93
container_end_page 753
container_issue 4
container_start_page 743
container_title Review of public personnel administration
container_volume 40
creator Alteri, Ashley M.
description A critical comparison of the agency identifier codes in the Federal Employee Viewpoint Survey (FEVS) and FedScope data sets reveals three distinct types of issues will occur when researchers attempt to merge the data sets: (a) a single agency is assigned different codes across data sets; (b) a single code is assigned to different agencies across data sets; and (c) a single code is assigned to two or more agencies in the FEVS data set and a separate agency in the FedScope data set. Between 2013 and 2016, these issues are present in almost all major federal departments. Compatibility issues between the agency identifiers could cause the user to drop observations unnecessarily or unknowingly combine two different agencies’ data improperly. If uncorrected, these issues will distort the analysis of studies that rely on this combination of data. However, researchers can correct for this issue and still use Office of Personnel Management (OPM) identifiers to combine data across multiple data sets.
doi_str_mv 10.1177/0734371X20904998
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2429414726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0734371X20904998</sage_id><sourcerecordid>2429414726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-58fe47f43e3da8d7d30300d5fd2fe57998ded10835c6011ad1b4e2cef780d1e93</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKt7lwHXU_NsZtxJfbTQ0kItdjekk5s6pU3GZFT6A_zfzlhBEFzdxfnOuZyD0CUlPUqVuiaKC67okpGMiCxLj1CHSskSJbPlMeq0ctLqp-gsxg0hlAmpOujzTtcaD_yu0nW5KrdlvcejGN8g3uCh_8C1x7MA7-BqPClj4U3p1lg7g--CryoweLqKEN4bs3cRP7-Aw4vYMovevIen1pYFYG_xDEL0zsEWT7TTa9i1id-_51DHc3Ri9TbCxc_tosXD_dNgmIynj6PB7TgpOMnqRKYWhLKCAzc6Ncpwwgkx0hpmQaqmtQFDScpl0SeUakNXAlgBVqXEUMh4F10dcqvgX5uOdb7xb8E1L3MmWCaoUKzfUORAFcHHGMDmVSh3OuxzSvJ27Pzv2I0lOVhi0-039F_-CxNYf7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429414726</pqid></control><display><type>article</type><title>Data Compatibility Issues: How to Prevent Miscoding and Dropped Observations When Using U.S. Office of Personnel Management Data Sets</title><source>Nexis UK</source><source>Worldwide Political Science Abstracts</source><source>Sage Journals Online</source><creator>Alteri, Ashley M.</creator><creatorcontrib>Alteri, Ashley M.</creatorcontrib><description>A critical comparison of the agency identifier codes in the Federal Employee Viewpoint Survey (FEVS) and FedScope data sets reveals three distinct types of issues will occur when researchers attempt to merge the data sets: (a) a single agency is assigned different codes across data sets; (b) a single code is assigned to different agencies across data sets; and (c) a single code is assigned to two or more agencies in the FEVS data set and a separate agency in the FedScope data set. Between 2013 and 2016, these issues are present in almost all major federal departments. Compatibility issues between the agency identifiers could cause the user to drop observations unnecessarily or unknowingly combine two different agencies’ data improperly. If uncorrected, these issues will distort the analysis of studies that rely on this combination of data. However, researchers can correct for this issue and still use Office of Personnel Management (OPM) identifiers to combine data across multiple data sets.</description><identifier>ISSN: 0734-371X</identifier><identifier>EISSN: 1552-759X</identifier><identifier>DOI: 10.1177/0734371X20904998</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Data ; Datasets ; Federal employees ; Longitudinal studies ; Personnel management ; Researchers</subject><ispartof>Review of public personnel administration, 2020-12, Vol.40 (4), p.743-753</ispartof><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-58fe47f43e3da8d7d30300d5fd2fe57998ded10835c6011ad1b4e2cef780d1e93</citedby><cites>FETCH-LOGICAL-c309t-58fe47f43e3da8d7d30300d5fd2fe57998ded10835c6011ad1b4e2cef780d1e93</cites><orcidid>0000-0001-7701-3182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,79364</link.rule.ids></links><search><creatorcontrib>Alteri, Ashley M.</creatorcontrib><title>Data Compatibility Issues: How to Prevent Miscoding and Dropped Observations When Using U.S. Office of Personnel Management Data Sets</title><title>Review of public personnel administration</title><description>A critical comparison of the agency identifier codes in the Federal Employee Viewpoint Survey (FEVS) and FedScope data sets reveals three distinct types of issues will occur when researchers attempt to merge the data sets: (a) a single agency is assigned different codes across data sets; (b) a single code is assigned to different agencies across data sets; and (c) a single code is assigned to two or more agencies in the FEVS data set and a separate agency in the FedScope data set. Between 2013 and 2016, these issues are present in almost all major federal departments. Compatibility issues between the agency identifiers could cause the user to drop observations unnecessarily or unknowingly combine two different agencies’ data improperly. If uncorrected, these issues will distort the analysis of studies that rely on this combination of data. However, researchers can correct for this issue and still use Office of Personnel Management (OPM) identifiers to combine data across multiple data sets.</description><subject>Data</subject><subject>Datasets</subject><subject>Federal employees</subject><subject>Longitudinal studies</subject><subject>Personnel management</subject><subject>Researchers</subject><issn>0734-371X</issn><issn>1552-759X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>7UB</sourceid><recordid>eNp1kEtLAzEUhYMoWKt7lwHXU_NsZtxJfbTQ0kItdjekk5s6pU3GZFT6A_zfzlhBEFzdxfnOuZyD0CUlPUqVuiaKC67okpGMiCxLj1CHSskSJbPlMeq0ctLqp-gsxg0hlAmpOujzTtcaD_yu0nW5KrdlvcejGN8g3uCh_8C1x7MA7-BqPClj4U3p1lg7g--CryoweLqKEN4bs3cRP7-Aw4vYMovevIen1pYFYG_xDEL0zsEWT7TTa9i1id-_51DHc3Ri9TbCxc_tosXD_dNgmIynj6PB7TgpOMnqRKYWhLKCAzc6Ncpwwgkx0hpmQaqmtQFDScpl0SeUakNXAlgBVqXEUMh4F10dcqvgX5uOdb7xb8E1L3MmWCaoUKzfUORAFcHHGMDmVSh3OuxzSvJ27Pzv2I0lOVhi0-039F_-CxNYf7s</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Alteri, Ashley M.</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UB</scope><orcidid>https://orcid.org/0000-0001-7701-3182</orcidid></search><sort><creationdate>202012</creationdate><title>Data Compatibility Issues: How to Prevent Miscoding and Dropped Observations When Using U.S. Office of Personnel Management Data Sets</title><author>Alteri, Ashley M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-58fe47f43e3da8d7d30300d5fd2fe57998ded10835c6011ad1b4e2cef780d1e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Data</topic><topic>Datasets</topic><topic>Federal employees</topic><topic>Longitudinal studies</topic><topic>Personnel management</topic><topic>Researchers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alteri, Ashley M.</creatorcontrib><collection>CrossRef</collection><collection>Worldwide Political Science Abstracts</collection><jtitle>Review of public personnel administration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alteri, Ashley M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data Compatibility Issues: How to Prevent Miscoding and Dropped Observations When Using U.S. Office of Personnel Management Data Sets</atitle><jtitle>Review of public personnel administration</jtitle><date>2020-12</date><risdate>2020</risdate><volume>40</volume><issue>4</issue><spage>743</spage><epage>753</epage><pages>743-753</pages><issn>0734-371X</issn><eissn>1552-759X</eissn><abstract>A critical comparison of the agency identifier codes in the Federal Employee Viewpoint Survey (FEVS) and FedScope data sets reveals three distinct types of issues will occur when researchers attempt to merge the data sets: (a) a single agency is assigned different codes across data sets; (b) a single code is assigned to different agencies across data sets; and (c) a single code is assigned to two or more agencies in the FEVS data set and a separate agency in the FedScope data set. Between 2013 and 2016, these issues are present in almost all major federal departments. Compatibility issues between the agency identifiers could cause the user to drop observations unnecessarily or unknowingly combine two different agencies’ data improperly. If uncorrected, these issues will distort the analysis of studies that rely on this combination of data. However, researchers can correct for this issue and still use Office of Personnel Management (OPM) identifiers to combine data across multiple data sets.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.1177/0734371X20904998</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7701-3182</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0734-371X
ispartof Review of public personnel administration, 2020-12, Vol.40 (4), p.743-753
issn 0734-371X
1552-759X
language eng
recordid cdi_proquest_journals_2429414726
source Nexis UK; Worldwide Political Science Abstracts; Sage Journals Online
subjects Data
Datasets
Federal employees
Longitudinal studies
Personnel management
Researchers
title Data Compatibility Issues: How to Prevent Miscoding and Dropped Observations When Using U.S. Office of Personnel Management Data Sets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A10%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20Compatibility%20Issues:%20How%20to%20Prevent%20Miscoding%20and%20Dropped%20Observations%20When%20Using%20U.S.%20Office%20of%20Personnel%20Management%20Data%20Sets&rft.jtitle=Review%20of%20public%20personnel%20administration&rft.au=Alteri,%20Ashley%20M.&rft.date=2020-12&rft.volume=40&rft.issue=4&rft.spage=743&rft.epage=753&rft.pages=743-753&rft.issn=0734-371X&rft.eissn=1552-759X&rft_id=info:doi/10.1177/0734371X20904998&rft_dat=%3Cproquest_cross%3E2429414726%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c309t-58fe47f43e3da8d7d30300d5fd2fe57998ded10835c6011ad1b4e2cef780d1e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2429414726&rft_id=info:pmid/&rft_sage_id=10.1177_0734371X20904998&rfr_iscdi=true