Loading…
Dynamic brittle fracture with eigenerosion enhanced material point method
Summary This article proposes an approach to resolve the dynamic fracture of brittle materials by incorporating eigenerosion into the material point method (MPM) framework. The eigenerosion approach links the crack propagation to energy conservation based on the variational theory of fracture mechan...
Saved in:
Published in: | International journal for numerical methods in engineering 2020-09, Vol.121 (17), p.3768-3794 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3321-4e46251cffc6bccc3acb80eb5f8935cad85ea4945ae8186bb358faf9461418063 |
---|---|
cites | cdi_FETCH-LOGICAL-c3321-4e46251cffc6bccc3acb80eb5f8935cad85ea4945ae8186bb358faf9461418063 |
container_end_page | 3794 |
container_issue | 17 |
container_start_page | 3768 |
container_title | International journal for numerical methods in engineering |
container_volume | 121 |
creator | Zhang, Kun Shen, Shui‐Long Zhou, Annan |
description | Summary
This article proposes an approach to resolve the dynamic fracture of brittle materials by incorporating eigenerosion into the material point method (MPM) framework. The eigenerosion approach links the crack propagation to energy conservation based on the variational theory of fracture mechanics. This idea closely resembles the conventional treatment for the phase‐field method. The major difference is that the effective energy release rate of each particle that controls the crack propagation is only calculated within its neighborhood domain for the eigenerosion approach. Because evaluation of the material's fracture behavior can be decoupled from the governing equations as a separate solution step, the eigenerosion scheme allows straightforward implementation into any standard MPM solver with minor modifications. In addition, a phantom‐node method is employed to handle the preexisting crack. With these settings, the proposed model can capture complex fracture behaviors. Several representative benchmark tests demonstrate the efficiency and validity of the proposed model. |
doi_str_mv | 10.1002/nme.6381 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2429638254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429638254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3321-4e46251cffc6bccc3acb80eb5f8935cad85ea4945ae8186bb358faf9461418063</originalsourceid><addsrcrecordid>eNp10MtOAjEUBuDGaCKiiY_QxI2bwV6HdmkUlQR1o-umU06lZKaDnRLC21vErauzOF_O5UfompIJJYTdxQ4mNVf0BI0o0dOKMDI9RaPS0pXUip6ji2FYE0KpJHyE5o_7aLvgcJNCzi1gn6zL2wR4F_IKQ_iCCKkfQh8xxJWNDpa4sxlSsC3e9CFm3EFe9ctLdOZtO8DVXx2jz6fZx8NLtXh_nj_cLyrHOaOVAFEzSZ33rm6cc9y6RhFopFeaS2eXSoIVWkgLiqq6abhU3notaiqoIjUfo5vj3E3qv7cwZLPutymWlYYJpsvvTIqibo_KleOHBN5sUuhs2htKzCEoU4Iyh6AKrY50F1rY_-vM2-vs1_8AV6BqGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429638254</pqid></control><display><type>article</type><title>Dynamic brittle fracture with eigenerosion enhanced material point method</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Zhang, Kun ; Shen, Shui‐Long ; Zhou, Annan</creator><creatorcontrib>Zhang, Kun ; Shen, Shui‐Long ; Zhou, Annan</creatorcontrib><description>Summary
This article proposes an approach to resolve the dynamic fracture of brittle materials by incorporating eigenerosion into the material point method (MPM) framework. The eigenerosion approach links the crack propagation to energy conservation based on the variational theory of fracture mechanics. This idea closely resembles the conventional treatment for the phase‐field method. The major difference is that the effective energy release rate of each particle that controls the crack propagation is only calculated within its neighborhood domain for the eigenerosion approach. Because evaluation of the material's fracture behavior can be decoupled from the governing equations as a separate solution step, the eigenerosion scheme allows straightforward implementation into any standard MPM solver with minor modifications. In addition, a phantom‐node method is employed to handle the preexisting crack. With these settings, the proposed model can capture complex fracture behaviors. Several representative benchmark tests demonstrate the efficiency and validity of the proposed model.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.6381</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Brittle fracture ; Brittle materials ; Crack propagation ; eigenerosion approach ; Energy conservation ; Energy release rate ; Fracture mechanics ; material point method ; phantom‐node method</subject><ispartof>International journal for numerical methods in engineering, 2020-09, Vol.121 (17), p.3768-3794</ispartof><rights>2020 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3321-4e46251cffc6bccc3acb80eb5f8935cad85ea4945ae8186bb358faf9461418063</citedby><cites>FETCH-LOGICAL-c3321-4e46251cffc6bccc3acb80eb5f8935cad85ea4945ae8186bb358faf9461418063</cites><orcidid>0000-0001-5209-5169 ; 0000-0002-5610-7988</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail></links><search><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Shen, Shui‐Long</creatorcontrib><creatorcontrib>Zhou, Annan</creatorcontrib><title>Dynamic brittle fracture with eigenerosion enhanced material point method</title><title>International journal for numerical methods in engineering</title><description>Summary
This article proposes an approach to resolve the dynamic fracture of brittle materials by incorporating eigenerosion into the material point method (MPM) framework. The eigenerosion approach links the crack propagation to energy conservation based on the variational theory of fracture mechanics. This idea closely resembles the conventional treatment for the phase‐field method. The major difference is that the effective energy release rate of each particle that controls the crack propagation is only calculated within its neighborhood domain for the eigenerosion approach. Because evaluation of the material's fracture behavior can be decoupled from the governing equations as a separate solution step, the eigenerosion scheme allows straightforward implementation into any standard MPM solver with minor modifications. In addition, a phantom‐node method is employed to handle the preexisting crack. With these settings, the proposed model can capture complex fracture behaviors. Several representative benchmark tests demonstrate the efficiency and validity of the proposed model.</description><subject>Brittle fracture</subject><subject>Brittle materials</subject><subject>Crack propagation</subject><subject>eigenerosion approach</subject><subject>Energy conservation</subject><subject>Energy release rate</subject><subject>Fracture mechanics</subject><subject>material point method</subject><subject>phantom‐node method</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10MtOAjEUBuDGaCKiiY_QxI2bwV6HdmkUlQR1o-umU06lZKaDnRLC21vErauzOF_O5UfompIJJYTdxQ4mNVf0BI0o0dOKMDI9RaPS0pXUip6ji2FYE0KpJHyE5o_7aLvgcJNCzi1gn6zL2wR4F_IKQ_iCCKkfQh8xxJWNDpa4sxlSsC3e9CFm3EFe9ctLdOZtO8DVXx2jz6fZx8NLtXh_nj_cLyrHOaOVAFEzSZ33rm6cc9y6RhFopFeaS2eXSoIVWkgLiqq6abhU3notaiqoIjUfo5vj3E3qv7cwZLPutymWlYYJpsvvTIqibo_KleOHBN5sUuhs2htKzCEoU4Iyh6AKrY50F1rY_-vM2-vs1_8AV6BqGw</recordid><startdate>20200915</startdate><enddate>20200915</enddate><creator>Zhang, Kun</creator><creator>Shen, Shui‐Long</creator><creator>Zhou, Annan</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5209-5169</orcidid><orcidid>https://orcid.org/0000-0002-5610-7988</orcidid></search><sort><creationdate>20200915</creationdate><title>Dynamic brittle fracture with eigenerosion enhanced material point method</title><author>Zhang, Kun ; Shen, Shui‐Long ; Zhou, Annan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3321-4e46251cffc6bccc3acb80eb5f8935cad85ea4945ae8186bb358faf9461418063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Brittle fracture</topic><topic>Brittle materials</topic><topic>Crack propagation</topic><topic>eigenerosion approach</topic><topic>Energy conservation</topic><topic>Energy release rate</topic><topic>Fracture mechanics</topic><topic>material point method</topic><topic>phantom‐node method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Shen, Shui‐Long</creatorcontrib><creatorcontrib>Zhou, Annan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Kun</au><au>Shen, Shui‐Long</au><au>Zhou, Annan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic brittle fracture with eigenerosion enhanced material point method</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2020-09-15</date><risdate>2020</risdate><volume>121</volume><issue>17</issue><spage>3768</spage><epage>3794</epage><pages>3768-3794</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Summary
This article proposes an approach to resolve the dynamic fracture of brittle materials by incorporating eigenerosion into the material point method (MPM) framework. The eigenerosion approach links the crack propagation to energy conservation based on the variational theory of fracture mechanics. This idea closely resembles the conventional treatment for the phase‐field method. The major difference is that the effective energy release rate of each particle that controls the crack propagation is only calculated within its neighborhood domain for the eigenerosion approach. Because evaluation of the material's fracture behavior can be decoupled from the governing equations as a separate solution step, the eigenerosion scheme allows straightforward implementation into any standard MPM solver with minor modifications. In addition, a phantom‐node method is employed to handle the preexisting crack. With these settings, the proposed model can capture complex fracture behaviors. Several representative benchmark tests demonstrate the efficiency and validity of the proposed model.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/nme.6381</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-5209-5169</orcidid><orcidid>https://orcid.org/0000-0002-5610-7988</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2020-09, Vol.121 (17), p.3768-3794 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_journals_2429638254 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Brittle fracture Brittle materials Crack propagation eigenerosion approach Energy conservation Energy release rate Fracture mechanics material point method phantom‐node method |
title | Dynamic brittle fracture with eigenerosion enhanced material point method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-09T12%3A42%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20brittle%20fracture%20with%20eigenerosion%20enhanced%20material%20point%20method&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Zhang,%20Kun&rft.date=2020-09-15&rft.volume=121&rft.issue=17&rft.spage=3768&rft.epage=3794&rft.pages=3768-3794&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.6381&rft_dat=%3Cproquest_cross%3E2429638254%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3321-4e46251cffc6bccc3acb80eb5f8935cad85ea4945ae8186bb358faf9461418063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2429638254&rft_id=info:pmid/&rfr_iscdi=true |