Loading…

Dynamic brittle fracture with eigenerosion enhanced material point method

Summary This article proposes an approach to resolve the dynamic fracture of brittle materials by incorporating eigenerosion into the material point method (MPM) framework. The eigenerosion approach links the crack propagation to energy conservation based on the variational theory of fracture mechan...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in engineering 2020-09, Vol.121 (17), p.3768-3794
Main Authors: Zhang, Kun, Shen, Shui‐Long, Zhou, Annan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3321-4e46251cffc6bccc3acb80eb5f8935cad85ea4945ae8186bb358faf9461418063
cites cdi_FETCH-LOGICAL-c3321-4e46251cffc6bccc3acb80eb5f8935cad85ea4945ae8186bb358faf9461418063
container_end_page 3794
container_issue 17
container_start_page 3768
container_title International journal for numerical methods in engineering
container_volume 121
creator Zhang, Kun
Shen, Shui‐Long
Zhou, Annan
description Summary This article proposes an approach to resolve the dynamic fracture of brittle materials by incorporating eigenerosion into the material point method (MPM) framework. The eigenerosion approach links the crack propagation to energy conservation based on the variational theory of fracture mechanics. This idea closely resembles the conventional treatment for the phase‐field method. The major difference is that the effective energy release rate of each particle that controls the crack propagation is only calculated within its neighborhood domain for the eigenerosion approach. Because evaluation of the material's fracture behavior can be decoupled from the governing equations as a separate solution step, the eigenerosion scheme allows straightforward implementation into any standard MPM solver with minor modifications. In addition, a phantom‐node method is employed to handle the preexisting crack. With these settings, the proposed model can capture complex fracture behaviors. Several representative benchmark tests demonstrate the efficiency and validity of the proposed model.
doi_str_mv 10.1002/nme.6381
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2429638254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429638254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3321-4e46251cffc6bccc3acb80eb5f8935cad85ea4945ae8186bb358faf9461418063</originalsourceid><addsrcrecordid>eNp10MtOAjEUBuDGaCKiiY_QxI2bwV6HdmkUlQR1o-umU06lZKaDnRLC21vErauzOF_O5UfompIJJYTdxQ4mNVf0BI0o0dOKMDI9RaPS0pXUip6ji2FYE0KpJHyE5o_7aLvgcJNCzi1gn6zL2wR4F_IKQ_iCCKkfQh8xxJWNDpa4sxlSsC3e9CFm3EFe9ctLdOZtO8DVXx2jz6fZx8NLtXh_nj_cLyrHOaOVAFEzSZ33rm6cc9y6RhFopFeaS2eXSoIVWkgLiqq6abhU3notaiqoIjUfo5vj3E3qv7cwZLPutymWlYYJpsvvTIqibo_KleOHBN5sUuhs2htKzCEoU4Iyh6AKrY50F1rY_-vM2-vs1_8AV6BqGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429638254</pqid></control><display><type>article</type><title>Dynamic brittle fracture with eigenerosion enhanced material point method</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Zhang, Kun ; Shen, Shui‐Long ; Zhou, Annan</creator><creatorcontrib>Zhang, Kun ; Shen, Shui‐Long ; Zhou, Annan</creatorcontrib><description>Summary This article proposes an approach to resolve the dynamic fracture of brittle materials by incorporating eigenerosion into the material point method (MPM) framework. The eigenerosion approach links the crack propagation to energy conservation based on the variational theory of fracture mechanics. This idea closely resembles the conventional treatment for the phase‐field method. The major difference is that the effective energy release rate of each particle that controls the crack propagation is only calculated within its neighborhood domain for the eigenerosion approach. Because evaluation of the material's fracture behavior can be decoupled from the governing equations as a separate solution step, the eigenerosion scheme allows straightforward implementation into any standard MPM solver with minor modifications. In addition, a phantom‐node method is employed to handle the preexisting crack. With these settings, the proposed model can capture complex fracture behaviors. Several representative benchmark tests demonstrate the efficiency and validity of the proposed model.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.6381</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Brittle fracture ; Brittle materials ; Crack propagation ; eigenerosion approach ; Energy conservation ; Energy release rate ; Fracture mechanics ; material point method ; phantom‐node method</subject><ispartof>International journal for numerical methods in engineering, 2020-09, Vol.121 (17), p.3768-3794</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3321-4e46251cffc6bccc3acb80eb5f8935cad85ea4945ae8186bb358faf9461418063</citedby><cites>FETCH-LOGICAL-c3321-4e46251cffc6bccc3acb80eb5f8935cad85ea4945ae8186bb358faf9461418063</cites><orcidid>0000-0001-5209-5169 ; 0000-0002-5610-7988</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail></links><search><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Shen, Shui‐Long</creatorcontrib><creatorcontrib>Zhou, Annan</creatorcontrib><title>Dynamic brittle fracture with eigenerosion enhanced material point method</title><title>International journal for numerical methods in engineering</title><description>Summary This article proposes an approach to resolve the dynamic fracture of brittle materials by incorporating eigenerosion into the material point method (MPM) framework. The eigenerosion approach links the crack propagation to energy conservation based on the variational theory of fracture mechanics. This idea closely resembles the conventional treatment for the phase‐field method. The major difference is that the effective energy release rate of each particle that controls the crack propagation is only calculated within its neighborhood domain for the eigenerosion approach. Because evaluation of the material's fracture behavior can be decoupled from the governing equations as a separate solution step, the eigenerosion scheme allows straightforward implementation into any standard MPM solver with minor modifications. In addition, a phantom‐node method is employed to handle the preexisting crack. With these settings, the proposed model can capture complex fracture behaviors. Several representative benchmark tests demonstrate the efficiency and validity of the proposed model.</description><subject>Brittle fracture</subject><subject>Brittle materials</subject><subject>Crack propagation</subject><subject>eigenerosion approach</subject><subject>Energy conservation</subject><subject>Energy release rate</subject><subject>Fracture mechanics</subject><subject>material point method</subject><subject>phantom‐node method</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10MtOAjEUBuDGaCKiiY_QxI2bwV6HdmkUlQR1o-umU06lZKaDnRLC21vErauzOF_O5UfompIJJYTdxQ4mNVf0BI0o0dOKMDI9RaPS0pXUip6ji2FYE0KpJHyE5o_7aLvgcJNCzi1gn6zL2wR4F_IKQ_iCCKkfQh8xxJWNDpa4sxlSsC3e9CFm3EFe9ctLdOZtO8DVXx2jz6fZx8NLtXh_nj_cLyrHOaOVAFEzSZ33rm6cc9y6RhFopFeaS2eXSoIVWkgLiqq6abhU3notaiqoIjUfo5vj3E3qv7cwZLPutymWlYYJpsvvTIqibo_KleOHBN5sUuhs2htKzCEoU4Iyh6AKrY50F1rY_-vM2-vs1_8AV6BqGw</recordid><startdate>20200915</startdate><enddate>20200915</enddate><creator>Zhang, Kun</creator><creator>Shen, Shui‐Long</creator><creator>Zhou, Annan</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5209-5169</orcidid><orcidid>https://orcid.org/0000-0002-5610-7988</orcidid></search><sort><creationdate>20200915</creationdate><title>Dynamic brittle fracture with eigenerosion enhanced material point method</title><author>Zhang, Kun ; Shen, Shui‐Long ; Zhou, Annan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3321-4e46251cffc6bccc3acb80eb5f8935cad85ea4945ae8186bb358faf9461418063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Brittle fracture</topic><topic>Brittle materials</topic><topic>Crack propagation</topic><topic>eigenerosion approach</topic><topic>Energy conservation</topic><topic>Energy release rate</topic><topic>Fracture mechanics</topic><topic>material point method</topic><topic>phantom‐node method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Shen, Shui‐Long</creatorcontrib><creatorcontrib>Zhou, Annan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Kun</au><au>Shen, Shui‐Long</au><au>Zhou, Annan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic brittle fracture with eigenerosion enhanced material point method</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2020-09-15</date><risdate>2020</risdate><volume>121</volume><issue>17</issue><spage>3768</spage><epage>3794</epage><pages>3768-3794</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Summary This article proposes an approach to resolve the dynamic fracture of brittle materials by incorporating eigenerosion into the material point method (MPM) framework. The eigenerosion approach links the crack propagation to energy conservation based on the variational theory of fracture mechanics. This idea closely resembles the conventional treatment for the phase‐field method. The major difference is that the effective energy release rate of each particle that controls the crack propagation is only calculated within its neighborhood domain for the eigenerosion approach. Because evaluation of the material's fracture behavior can be decoupled from the governing equations as a separate solution step, the eigenerosion scheme allows straightforward implementation into any standard MPM solver with minor modifications. In addition, a phantom‐node method is employed to handle the preexisting crack. With these settings, the proposed model can capture complex fracture behaviors. Several representative benchmark tests demonstrate the efficiency and validity of the proposed model.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/nme.6381</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-5209-5169</orcidid><orcidid>https://orcid.org/0000-0002-5610-7988</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2020-09, Vol.121 (17), p.3768-3794
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_journals_2429638254
source Wiley-Blackwell Read & Publish Collection
subjects Brittle fracture
Brittle materials
Crack propagation
eigenerosion approach
Energy conservation
Energy release rate
Fracture mechanics
material point method
phantom‐node method
title Dynamic brittle fracture with eigenerosion enhanced material point method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-09T12%3A42%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20brittle%20fracture%20with%20eigenerosion%20enhanced%20material%20point%20method&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Zhang,%20Kun&rft.date=2020-09-15&rft.volume=121&rft.issue=17&rft.spage=3768&rft.epage=3794&rft.pages=3768-3794&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.6381&rft_dat=%3Cproquest_cross%3E2429638254%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3321-4e46251cffc6bccc3acb80eb5f8935cad85ea4945ae8186bb358faf9461418063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2429638254&rft_id=info:pmid/&rfr_iscdi=true