Loading…
Numerical simulation for the single-bubble electrospinning process
This paper studies numerically the two-phase flow in the single-bubble electrospinning process by solving the modified Navier-Stokes equations under the influence of electric field, and the interface between the two fluids has been determined by using the volume of fluids method. A realizable k-? mo...
Saved in:
Published in: | Thermal science 2015, Vol.19 (4), p.1255-1259 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c301t-a16536141433cb72d7a101c1c42a2bfa94fe267bb00a6579fcc0d39e1b6c04f63 |
---|---|
cites | |
container_end_page | 1259 |
container_issue | 4 |
container_start_page | 1255 |
container_title | Thermal science |
container_volume | 19 |
creator | Xu, Lan Zhao, Jiang-Hui Liu, Hua |
description | This paper studies numerically the two-phase flow in the single-bubble
electrospinning process by solving the modified Navier-Stokes equations under
the influence of electric field, and the interface between the two fluids has
been determined by using the volume of fluids method. A realizable k-? model
is used to model the turbulent viscosity. The numerical results offer
in-depth insight into physical understanding of many complex phenomena which
cannot be fully explained experimentally.
nema |
doi_str_mv | 10.2298/TSCI1504255X |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2429793907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429793907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-a16536141433cb72d7a101c1c42a2bfa94fe267bb00a6579fcc0d39e1b6c04f63</originalsourceid><addsrcrecordid>eNpNUM1KxDAYDKJgXb35AAWvRr_kS5PmqIurC4seXMFbSbKJdumfSXvw7a2sB08DM8PMMIRcMrjhXJe329flmhUgeFG8H5GMIwqqmMRjkgEWguoS5Sk5S2kPIGVZqozcP0-tj7UzTZ7qdmrMWPddHvqYj59-prqPxlM7Wdv43DfejbFPQ911s5APsXc-pXNyEkyT_MUfLsjb6mG7fKKbl8f18m5DHQIbqWGyQMkEE4jOKr5ThgFzzAluuA1Gi-C5VNYCGFkoHZyDHWrPrHQggsQFuTrkzr1fk09jte-n2M2VFRdcK40a1Oy6PrjcvDRFH6oh1q2J3xWD6vel6v9L-AMK9lpV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429793907</pqid></control><display><type>article</type><title>Numerical simulation for the single-bubble electrospinning process</title><source>Publicly Available Content Database</source><source>IngentaConnect Journals</source><creator>Xu, Lan ; Zhao, Jiang-Hui ; Liu, Hua</creator><creatorcontrib>Xu, Lan ; Zhao, Jiang-Hui ; Liu, Hua</creatorcontrib><description>This paper studies numerically the two-phase flow in the single-bubble
electrospinning process by solving the modified Navier-Stokes equations under
the influence of electric field, and the interface between the two fluids has
been determined by using the volume of fluids method. A realizable k-? model
is used to model the turbulent viscosity. The numerical results offer
in-depth insight into physical understanding of many complex phenomena which
cannot be fully explained experimentally.
nema</description><identifier>ISSN: 0354-9836</identifier><identifier>EISSN: 2334-7163</identifier><identifier>DOI: 10.2298/TSCI1504255X</identifier><language>eng</language><publisher>Belgrade: Society of Thermal Engineers of Serbia</publisher><subject>Computational fluid dynamics ; Computer simulation ; Electric fields ; Electrospinning ; Fluid flow ; Mathematical models ; Two phase flow</subject><ispartof>Thermal science, 2015, Vol.19 (4), p.1255-1259</ispartof><rights>2015. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-a16536141433cb72d7a101c1c42a2bfa94fe267bb00a6579fcc0d39e1b6c04f63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2429793907?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml></links><search><creatorcontrib>Xu, Lan</creatorcontrib><creatorcontrib>Zhao, Jiang-Hui</creatorcontrib><creatorcontrib>Liu, Hua</creatorcontrib><title>Numerical simulation for the single-bubble electrospinning process</title><title>Thermal science</title><description>This paper studies numerically the two-phase flow in the single-bubble
electrospinning process by solving the modified Navier-Stokes equations under
the influence of electric field, and the interface between the two fluids has
been determined by using the volume of fluids method. A realizable k-? model
is used to model the turbulent viscosity. The numerical results offer
in-depth insight into physical understanding of many complex phenomena which
cannot be fully explained experimentally.
nema</description><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Electric fields</subject><subject>Electrospinning</subject><subject>Fluid flow</subject><subject>Mathematical models</subject><subject>Two phase flow</subject><issn>0354-9836</issn><issn>2334-7163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNUM1KxDAYDKJgXb35AAWvRr_kS5PmqIurC4seXMFbSbKJdumfSXvw7a2sB08DM8PMMIRcMrjhXJe329flmhUgeFG8H5GMIwqqmMRjkgEWguoS5Sk5S2kPIGVZqozcP0-tj7UzTZ7qdmrMWPddHvqYj59-prqPxlM7Wdv43DfejbFPQ911s5APsXc-pXNyEkyT_MUfLsjb6mG7fKKbl8f18m5DHQIbqWGyQMkEE4jOKr5ThgFzzAluuA1Gi-C5VNYCGFkoHZyDHWrPrHQggsQFuTrkzr1fk09jte-n2M2VFRdcK40a1Oy6PrjcvDRFH6oh1q2J3xWD6vel6v9L-AMK9lpV</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Xu, Lan</creator><creator>Zhao, Jiang-Hui</creator><creator>Liu, Hua</creator><general>Society of Thermal Engineers of Serbia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>2015</creationdate><title>Numerical simulation for the single-bubble electrospinning process</title><author>Xu, Lan ; Zhao, Jiang-Hui ; Liu, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-a16536141433cb72d7a101c1c42a2bfa94fe267bb00a6579fcc0d39e1b6c04f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Electric fields</topic><topic>Electrospinning</topic><topic>Fluid flow</topic><topic>Mathematical models</topic><topic>Two phase flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Lan</creatorcontrib><creatorcontrib>Zhao, Jiang-Hui</creatorcontrib><creatorcontrib>Liu, Hua</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Thermal science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Lan</au><au>Zhao, Jiang-Hui</au><au>Liu, Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation for the single-bubble electrospinning process</atitle><jtitle>Thermal science</jtitle><date>2015</date><risdate>2015</risdate><volume>19</volume><issue>4</issue><spage>1255</spage><epage>1259</epage><pages>1255-1259</pages><issn>0354-9836</issn><eissn>2334-7163</eissn><abstract>This paper studies numerically the two-phase flow in the single-bubble
electrospinning process by solving the modified Navier-Stokes equations under
the influence of electric field, and the interface between the two fluids has
been determined by using the volume of fluids method. A realizable k-? model
is used to model the turbulent viscosity. The numerical results offer
in-depth insight into physical understanding of many complex phenomena which
cannot be fully explained experimentally.
nema</abstract><cop>Belgrade</cop><pub>Society of Thermal Engineers of Serbia</pub><doi>10.2298/TSCI1504255X</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0354-9836 |
ispartof | Thermal science, 2015, Vol.19 (4), p.1255-1259 |
issn | 0354-9836 2334-7163 |
language | eng |
recordid | cdi_proquest_journals_2429793907 |
source | Publicly Available Content Database; IngentaConnect Journals |
subjects | Computational fluid dynamics Computer simulation Electric fields Electrospinning Fluid flow Mathematical models Two phase flow |
title | Numerical simulation for the single-bubble electrospinning process |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-09T20%3A16%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20for%20the%20single-bubble%20electrospinning%20process&rft.jtitle=Thermal%20science&rft.au=Xu,%20Lan&rft.date=2015&rft.volume=19&rft.issue=4&rft.spage=1255&rft.epage=1259&rft.pages=1255-1259&rft.issn=0354-9836&rft.eissn=2334-7163&rft_id=info:doi/10.2298/TSCI1504255X&rft_dat=%3Cproquest_cross%3E2429793907%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c301t-a16536141433cb72d7a101c1c42a2bfa94fe267bb00a6579fcc0d39e1b6c04f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2429793907&rft_id=info:pmid/&rfr_iscdi=true |