Loading…
Application of lattice Boltzmann method and field synergy principle to the heat transfer analysis of channel flow with obstacles inside
In this paper the lattice Boltzmann method and field synergy principle are applied to simulate two-dimensional incompressible steady channel flow under low Reynolds number, and analyze the local influence on velocity field and temperature field caused by inserting cylinder obstacles of different cro...
Saved in:
Published in: | Thermal science 2011, Vol.15 (suppl. 1), p.75-80 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 80 |
container_issue | suppl. 1 |
container_start_page | 75 |
container_title | Thermal science |
container_volume | 15 |
creator | Wang, Cheng-Chi Yau, Her-Terng Lin, Chien-Nan Cheng, Po-Jen Hung, Wei-Min |
description | In this paper the lattice Boltzmann method and field synergy principle are
applied to simulate two-dimensional incompressible steady channel flow under
low Reynolds number, and analyze the local influence on velocity field and
temperature field caused by inserting cylinder obstacles of different
cross-section. Furthermore, field synergy principle of elliptic flow type is
applied to demonstrate that the increased interruption within the fluid
increases the synergistic level between the velocity field and temperature
gradient field. As the intersection angle between the velocity vector and the
temperature gradient vector decreases by inserting cylinder obstacles to
fluid field, the results of heat transfer will improve significantly.
nema |
doi_str_mv | 10.2298/TSCI11S1075W |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2429868217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429868217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-8f0b2696bae7731457b9c92af2a6f8f2902dbb8c0e6189b90cb83cebcccfe673</originalsourceid><addsrcrecordid>eNpNkM1KAzEUhYMoWKs7HyDg1tH8tJnMshZ_CgUXLbgcksyNk5JOxiSl1BfwtZ1SF67u5tyPcz6Ebil5YKySj-vVfEHpipJy-nGGRozzSVFSwc_RiPDppKgkF5foKqUNIUJIWY7Qz6zvvTMqu9DhYLFXOTsD-Cn4_L1VXYe3kNvQYNU12DrwDU6HDuLnAffRdcb1HnAOOLeAW1AZ56i6ZCEOD8ofkktHqmkHEnhsfdjjvcstDjplZTwk7LrkGrhGF1b5BDd_d4zWL8_r-VuxfH9dzGfLwrCpzIW0RDNRCa2gLDmdTEtdmYopy5Sw0rKKsEZraQgIKitdEaMlN6CNMRZEycfo7oTtY_jaQcr1Juzi0DTVbDIoFJLRY-r-lDIxpBTB1sPWrYqHmpL6aLr-b5r_Al8PdL4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429868217</pqid></control><display><type>article</type><title>Application of lattice Boltzmann method and field synergy principle to the heat transfer analysis of channel flow with obstacles inside</title><source>Publicly Available Content (ProQuest)</source><source>IngentaConnect Journals</source><creator>Wang, Cheng-Chi ; Yau, Her-Terng ; Lin, Chien-Nan ; Cheng, Po-Jen ; Hung, Wei-Min</creator><creatorcontrib>Wang, Cheng-Chi ; Yau, Her-Terng ; Lin, Chien-Nan ; Cheng, Po-Jen ; Hung, Wei-Min</creatorcontrib><description>In this paper the lattice Boltzmann method and field synergy principle are
applied to simulate two-dimensional incompressible steady channel flow under
low Reynolds number, and analyze the local influence on velocity field and
temperature field caused by inserting cylinder obstacles of different
cross-section. Furthermore, field synergy principle of elliptic flow type is
applied to demonstrate that the increased interruption within the fluid
increases the synergistic level between the velocity field and temperature
gradient field. As the intersection angle between the velocity vector and the
temperature gradient vector decreases by inserting cylinder obstacles to
fluid field, the results of heat transfer will improve significantly.
nema</description><identifier>ISSN: 0354-9836</identifier><identifier>EISSN: 2334-7163</identifier><identifier>DOI: 10.2298/TSCI11S1075W</identifier><language>eng</language><publisher>Belgrade: Society of Thermal Engineers of Serbia</publisher><subject>Barriers ; Channel flow ; Computational fluid dynamics ; Cylinders ; Fluid flow ; Heat transfer ; Incompressible flow ; Reynolds number ; Temperature distribution ; Temperature gradients ; Two dimensional flow ; Velocity distribution</subject><ispartof>Thermal science, 2011, Vol.15 (suppl. 1), p.75-80</ispartof><rights>2011. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2429868217?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Wang, Cheng-Chi</creatorcontrib><creatorcontrib>Yau, Her-Terng</creatorcontrib><creatorcontrib>Lin, Chien-Nan</creatorcontrib><creatorcontrib>Cheng, Po-Jen</creatorcontrib><creatorcontrib>Hung, Wei-Min</creatorcontrib><title>Application of lattice Boltzmann method and field synergy principle to the heat transfer analysis of channel flow with obstacles inside</title><title>Thermal science</title><description>In this paper the lattice Boltzmann method and field synergy principle are
applied to simulate two-dimensional incompressible steady channel flow under
low Reynolds number, and analyze the local influence on velocity field and
temperature field caused by inserting cylinder obstacles of different
cross-section. Furthermore, field synergy principle of elliptic flow type is
applied to demonstrate that the increased interruption within the fluid
increases the synergistic level between the velocity field and temperature
gradient field. As the intersection angle between the velocity vector and the
temperature gradient vector decreases by inserting cylinder obstacles to
fluid field, the results of heat transfer will improve significantly.
nema</description><subject>Barriers</subject><subject>Channel flow</subject><subject>Computational fluid dynamics</subject><subject>Cylinders</subject><subject>Fluid flow</subject><subject>Heat transfer</subject><subject>Incompressible flow</subject><subject>Reynolds number</subject><subject>Temperature distribution</subject><subject>Temperature gradients</subject><subject>Two dimensional flow</subject><subject>Velocity distribution</subject><issn>0354-9836</issn><issn>2334-7163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNkM1KAzEUhYMoWKs7HyDg1tH8tJnMshZ_CgUXLbgcksyNk5JOxiSl1BfwtZ1SF67u5tyPcz6Ebil5YKySj-vVfEHpipJy-nGGRozzSVFSwc_RiPDppKgkF5foKqUNIUJIWY7Qz6zvvTMqu9DhYLFXOTsD-Cn4_L1VXYe3kNvQYNU12DrwDU6HDuLnAffRdcb1HnAOOLeAW1AZ56i6ZCEOD8ofkktHqmkHEnhsfdjjvcstDjplZTwk7LrkGrhGF1b5BDd_d4zWL8_r-VuxfH9dzGfLwrCpzIW0RDNRCa2gLDmdTEtdmYopy5Sw0rKKsEZraQgIKitdEaMlN6CNMRZEycfo7oTtY_jaQcr1Juzi0DTVbDIoFJLRY-r-lDIxpBTB1sPWrYqHmpL6aLr-b5r_Al8PdL4</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Wang, Cheng-Chi</creator><creator>Yau, Her-Terng</creator><creator>Lin, Chien-Nan</creator><creator>Cheng, Po-Jen</creator><creator>Hung, Wei-Min</creator><general>Society of Thermal Engineers of Serbia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>2011</creationdate><title>Application of lattice Boltzmann method and field synergy principle to the heat transfer analysis of channel flow with obstacles inside</title><author>Wang, Cheng-Chi ; Yau, Her-Terng ; Lin, Chien-Nan ; Cheng, Po-Jen ; Hung, Wei-Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-8f0b2696bae7731457b9c92af2a6f8f2902dbb8c0e6189b90cb83cebcccfe673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Barriers</topic><topic>Channel flow</topic><topic>Computational fluid dynamics</topic><topic>Cylinders</topic><topic>Fluid flow</topic><topic>Heat transfer</topic><topic>Incompressible flow</topic><topic>Reynolds number</topic><topic>Temperature distribution</topic><topic>Temperature gradients</topic><topic>Two dimensional flow</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Cheng-Chi</creatorcontrib><creatorcontrib>Yau, Her-Terng</creatorcontrib><creatorcontrib>Lin, Chien-Nan</creatorcontrib><creatorcontrib>Cheng, Po-Jen</creatorcontrib><creatorcontrib>Hung, Wei-Min</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Thermal science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Cheng-Chi</au><au>Yau, Her-Terng</au><au>Lin, Chien-Nan</au><au>Cheng, Po-Jen</au><au>Hung, Wei-Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of lattice Boltzmann method and field synergy principle to the heat transfer analysis of channel flow with obstacles inside</atitle><jtitle>Thermal science</jtitle><date>2011</date><risdate>2011</risdate><volume>15</volume><issue>suppl. 1</issue><spage>75</spage><epage>80</epage><pages>75-80</pages><issn>0354-9836</issn><eissn>2334-7163</eissn><abstract>In this paper the lattice Boltzmann method and field synergy principle are
applied to simulate two-dimensional incompressible steady channel flow under
low Reynolds number, and analyze the local influence on velocity field and
temperature field caused by inserting cylinder obstacles of different
cross-section. Furthermore, field synergy principle of elliptic flow type is
applied to demonstrate that the increased interruption within the fluid
increases the synergistic level between the velocity field and temperature
gradient field. As the intersection angle between the velocity vector and the
temperature gradient vector decreases by inserting cylinder obstacles to
fluid field, the results of heat transfer will improve significantly.
nema</abstract><cop>Belgrade</cop><pub>Society of Thermal Engineers of Serbia</pub><doi>10.2298/TSCI11S1075W</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0354-9836 |
ispartof | Thermal science, 2011, Vol.15 (suppl. 1), p.75-80 |
issn | 0354-9836 2334-7163 |
language | eng |
recordid | cdi_proquest_journals_2429868217 |
source | Publicly Available Content (ProQuest); IngentaConnect Journals |
subjects | Barriers Channel flow Computational fluid dynamics Cylinders Fluid flow Heat transfer Incompressible flow Reynolds number Temperature distribution Temperature gradients Two dimensional flow Velocity distribution |
title | Application of lattice Boltzmann method and field synergy principle to the heat transfer analysis of channel flow with obstacles inside |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A43%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20lattice%20Boltzmann%20method%20and%20field%20synergy%20principle%20to%20the%20heat%20transfer%20analysis%20of%20channel%20flow%20with%20obstacles%20inside&rft.jtitle=Thermal%20science&rft.au=Wang,%20Cheng-Chi&rft.date=2011&rft.volume=15&rft.issue=suppl.%201&rft.spage=75&rft.epage=80&rft.pages=75-80&rft.issn=0354-9836&rft.eissn=2334-7163&rft_id=info:doi/10.2298/TSCI11S1075W&rft_dat=%3Cproquest_cross%3E2429868217%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c258t-8f0b2696bae7731457b9c92af2a6f8f2902dbb8c0e6189b90cb83cebcccfe673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2429868217&rft_id=info:pmid/&rfr_iscdi=true |