Loading…

Application of lattice Boltzmann method and field synergy principle to the heat transfer analysis of channel flow with obstacles inside

In this paper the lattice Boltzmann method and field synergy principle are applied to simulate two-dimensional incompressible steady channel flow under low Reynolds number, and analyze the local influence on velocity field and temperature field caused by inserting cylinder obstacles of different cro...

Full description

Saved in:
Bibliographic Details
Published in:Thermal science 2011, Vol.15 (suppl. 1), p.75-80
Main Authors: Wang, Cheng-Chi, Yau, Her-Terng, Lin, Chien-Nan, Cheng, Po-Jen, Hung, Wei-Min
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 80
container_issue suppl. 1
container_start_page 75
container_title Thermal science
container_volume 15
creator Wang, Cheng-Chi
Yau, Her-Terng
Lin, Chien-Nan
Cheng, Po-Jen
Hung, Wei-Min
description In this paper the lattice Boltzmann method and field synergy principle are applied to simulate two-dimensional incompressible steady channel flow under low Reynolds number, and analyze the local influence on velocity field and temperature field caused by inserting cylinder obstacles of different cross-section. Furthermore, field synergy principle of elliptic flow type is applied to demonstrate that the increased interruption within the fluid increases the synergistic level between the velocity field and temperature gradient field. As the intersection angle between the velocity vector and the temperature gradient vector decreases by inserting cylinder obstacles to fluid field, the results of heat transfer will improve significantly. nema
doi_str_mv 10.2298/TSCI11S1075W
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2429868217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429868217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-8f0b2696bae7731457b9c92af2a6f8f2902dbb8c0e6189b90cb83cebcccfe673</originalsourceid><addsrcrecordid>eNpNkM1KAzEUhYMoWKs7HyDg1tH8tJnMshZ_CgUXLbgcksyNk5JOxiSl1BfwtZ1SF67u5tyPcz6Ebil5YKySj-vVfEHpipJy-nGGRozzSVFSwc_RiPDppKgkF5foKqUNIUJIWY7Qz6zvvTMqu9DhYLFXOTsD-Cn4_L1VXYe3kNvQYNU12DrwDU6HDuLnAffRdcb1HnAOOLeAW1AZ56i6ZCEOD8ofkktHqmkHEnhsfdjjvcstDjplZTwk7LrkGrhGF1b5BDd_d4zWL8_r-VuxfH9dzGfLwrCpzIW0RDNRCa2gLDmdTEtdmYopy5Sw0rKKsEZraQgIKitdEaMlN6CNMRZEycfo7oTtY_jaQcr1Juzi0DTVbDIoFJLRY-r-lDIxpBTB1sPWrYqHmpL6aLr-b5r_Al8PdL4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429868217</pqid></control><display><type>article</type><title>Application of lattice Boltzmann method and field synergy principle to the heat transfer analysis of channel flow with obstacles inside</title><source>Publicly Available Content (ProQuest)</source><source>IngentaConnect Journals</source><creator>Wang, Cheng-Chi ; Yau, Her-Terng ; Lin, Chien-Nan ; Cheng, Po-Jen ; Hung, Wei-Min</creator><creatorcontrib>Wang, Cheng-Chi ; Yau, Her-Terng ; Lin, Chien-Nan ; Cheng, Po-Jen ; Hung, Wei-Min</creatorcontrib><description>In this paper the lattice Boltzmann method and field synergy principle are applied to simulate two-dimensional incompressible steady channel flow under low Reynolds number, and analyze the local influence on velocity field and temperature field caused by inserting cylinder obstacles of different cross-section. Furthermore, field synergy principle of elliptic flow type is applied to demonstrate that the increased interruption within the fluid increases the synergistic level between the velocity field and temperature gradient field. As the intersection angle between the velocity vector and the temperature gradient vector decreases by inserting cylinder obstacles to fluid field, the results of heat transfer will improve significantly. nema</description><identifier>ISSN: 0354-9836</identifier><identifier>EISSN: 2334-7163</identifier><identifier>DOI: 10.2298/TSCI11S1075W</identifier><language>eng</language><publisher>Belgrade: Society of Thermal Engineers of Serbia</publisher><subject>Barriers ; Channel flow ; Computational fluid dynamics ; Cylinders ; Fluid flow ; Heat transfer ; Incompressible flow ; Reynolds number ; Temperature distribution ; Temperature gradients ; Two dimensional flow ; Velocity distribution</subject><ispartof>Thermal science, 2011, Vol.15 (suppl. 1), p.75-80</ispartof><rights>2011. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2429868217?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Wang, Cheng-Chi</creatorcontrib><creatorcontrib>Yau, Her-Terng</creatorcontrib><creatorcontrib>Lin, Chien-Nan</creatorcontrib><creatorcontrib>Cheng, Po-Jen</creatorcontrib><creatorcontrib>Hung, Wei-Min</creatorcontrib><title>Application of lattice Boltzmann method and field synergy principle to the heat transfer analysis of channel flow with obstacles inside</title><title>Thermal science</title><description>In this paper the lattice Boltzmann method and field synergy principle are applied to simulate two-dimensional incompressible steady channel flow under low Reynolds number, and analyze the local influence on velocity field and temperature field caused by inserting cylinder obstacles of different cross-section. Furthermore, field synergy principle of elliptic flow type is applied to demonstrate that the increased interruption within the fluid increases the synergistic level between the velocity field and temperature gradient field. As the intersection angle between the velocity vector and the temperature gradient vector decreases by inserting cylinder obstacles to fluid field, the results of heat transfer will improve significantly. nema</description><subject>Barriers</subject><subject>Channel flow</subject><subject>Computational fluid dynamics</subject><subject>Cylinders</subject><subject>Fluid flow</subject><subject>Heat transfer</subject><subject>Incompressible flow</subject><subject>Reynolds number</subject><subject>Temperature distribution</subject><subject>Temperature gradients</subject><subject>Two dimensional flow</subject><subject>Velocity distribution</subject><issn>0354-9836</issn><issn>2334-7163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNkM1KAzEUhYMoWKs7HyDg1tH8tJnMshZ_CgUXLbgcksyNk5JOxiSl1BfwtZ1SF67u5tyPcz6Ebil5YKySj-vVfEHpipJy-nGGRozzSVFSwc_RiPDppKgkF5foKqUNIUJIWY7Qz6zvvTMqu9DhYLFXOTsD-Cn4_L1VXYe3kNvQYNU12DrwDU6HDuLnAffRdcb1HnAOOLeAW1AZ56i6ZCEOD8ofkktHqmkHEnhsfdjjvcstDjplZTwk7LrkGrhGF1b5BDd_d4zWL8_r-VuxfH9dzGfLwrCpzIW0RDNRCa2gLDmdTEtdmYopy5Sw0rKKsEZraQgIKitdEaMlN6CNMRZEycfo7oTtY_jaQcr1Juzi0DTVbDIoFJLRY-r-lDIxpBTB1sPWrYqHmpL6aLr-b5r_Al8PdL4</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Wang, Cheng-Chi</creator><creator>Yau, Her-Terng</creator><creator>Lin, Chien-Nan</creator><creator>Cheng, Po-Jen</creator><creator>Hung, Wei-Min</creator><general>Society of Thermal Engineers of Serbia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>2011</creationdate><title>Application of lattice Boltzmann method and field synergy principle to the heat transfer analysis of channel flow with obstacles inside</title><author>Wang, Cheng-Chi ; Yau, Her-Terng ; Lin, Chien-Nan ; Cheng, Po-Jen ; Hung, Wei-Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-8f0b2696bae7731457b9c92af2a6f8f2902dbb8c0e6189b90cb83cebcccfe673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Barriers</topic><topic>Channel flow</topic><topic>Computational fluid dynamics</topic><topic>Cylinders</topic><topic>Fluid flow</topic><topic>Heat transfer</topic><topic>Incompressible flow</topic><topic>Reynolds number</topic><topic>Temperature distribution</topic><topic>Temperature gradients</topic><topic>Two dimensional flow</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Cheng-Chi</creatorcontrib><creatorcontrib>Yau, Her-Terng</creatorcontrib><creatorcontrib>Lin, Chien-Nan</creatorcontrib><creatorcontrib>Cheng, Po-Jen</creatorcontrib><creatorcontrib>Hung, Wei-Min</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Thermal science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Cheng-Chi</au><au>Yau, Her-Terng</au><au>Lin, Chien-Nan</au><au>Cheng, Po-Jen</au><au>Hung, Wei-Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of lattice Boltzmann method and field synergy principle to the heat transfer analysis of channel flow with obstacles inside</atitle><jtitle>Thermal science</jtitle><date>2011</date><risdate>2011</risdate><volume>15</volume><issue>suppl. 1</issue><spage>75</spage><epage>80</epage><pages>75-80</pages><issn>0354-9836</issn><eissn>2334-7163</eissn><abstract>In this paper the lattice Boltzmann method and field synergy principle are applied to simulate two-dimensional incompressible steady channel flow under low Reynolds number, and analyze the local influence on velocity field and temperature field caused by inserting cylinder obstacles of different cross-section. Furthermore, field synergy principle of elliptic flow type is applied to demonstrate that the increased interruption within the fluid increases the synergistic level between the velocity field and temperature gradient field. As the intersection angle between the velocity vector and the temperature gradient vector decreases by inserting cylinder obstacles to fluid field, the results of heat transfer will improve significantly. nema</abstract><cop>Belgrade</cop><pub>Society of Thermal Engineers of Serbia</pub><doi>10.2298/TSCI11S1075W</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0354-9836
ispartof Thermal science, 2011, Vol.15 (suppl. 1), p.75-80
issn 0354-9836
2334-7163
language eng
recordid cdi_proquest_journals_2429868217
source Publicly Available Content (ProQuest); IngentaConnect Journals
subjects Barriers
Channel flow
Computational fluid dynamics
Cylinders
Fluid flow
Heat transfer
Incompressible flow
Reynolds number
Temperature distribution
Temperature gradients
Two dimensional flow
Velocity distribution
title Application of lattice Boltzmann method and field synergy principle to the heat transfer analysis of channel flow with obstacles inside
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A43%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20lattice%20Boltzmann%20method%20and%20field%20synergy%20principle%20to%20the%20heat%20transfer%20analysis%20of%20channel%20flow%20with%20obstacles%20inside&rft.jtitle=Thermal%20science&rft.au=Wang,%20Cheng-Chi&rft.date=2011&rft.volume=15&rft.issue=suppl.%201&rft.spage=75&rft.epage=80&rft.pages=75-80&rft.issn=0354-9836&rft.eissn=2334-7163&rft_id=info:doi/10.2298/TSCI11S1075W&rft_dat=%3Cproquest_cross%3E2429868217%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c258t-8f0b2696bae7731457b9c92af2a6f8f2902dbb8c0e6189b90cb83cebcccfe673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2429868217&rft_id=info:pmid/&rfr_iscdi=true