Loading…

Constructal entransy dissipation minimization for “volume-point” heat conduction based on triangular element

By taking equivalent thermal resistance, which reflects the average heat conduction effect and is defined based on entransy dissipation, as optimization objective, the “volume to point” constructal problem based on triangular element of how to discharge the heat generated in a fixed volume to a heat...

Full description

Saved in:
Bibliographic Details
Published in:Thermal science 2010, Vol.14 (4), p.1075-1088
Main Authors: Wei, Shuhuan, Chen, Lingen, Sun, Fengrui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:By taking equivalent thermal resistance, which reflects the average heat conduction effect and is defined based on entransy dissipation, as optimization objective, the “volume to point” constructal problem based on triangular element of how to discharge the heat generated in a fixed volume to a heat sink on the border through relatively high conductive link is re-analyzed and re-optimized in this paper. The constructal shape of the control volume with the best average heat conduction effect is deduced. For the same parameters, the constructs based on minimization of entransy dissipation and the constructs based on minimization of maximum temperature difference are compared, and the results show that the constructs based on entransy dissipation can decrease the mean temperature difference better than the constructs based on minimization of maximum temperature difference. But with the increase of the number of order, the mean temperature difference does not always decrease, and there exists some fluctuations. Because the idea of entransy describes heat transfer ability more suitably, the optimization results of this paper can be put to engineering application of electronic cooling.
ISSN:0354-9836
2334-7163
DOI:10.2298/TSCI1004075W