Loading…

Modeling, Calibration, and Evaluation of a Tendon-Actuated Planar Parallel Continuum Robot

In this work, a novel planar parallel continuum robot (PCR) is introduced, consisting of three kinematic chains that are coupled at a triangular end-effector platform and include tendon-actuated continuum segments. The kinematics of the resulting structure are derived by adapting the descriptions fo...

Full description

Saved in:
Bibliographic Details
Published in:IEEE robotics and automation letters 2020-10, Vol.5 (4), p.5811-5818
Main Authors: Nuelle, Kathrin, Sterneck, Tim, Lilge, Sven, Xiong, Dezhu, Burgner-Kahrs, Jessica, Ortmaier, Tobias
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c380t-95dca322e7b33e926bd57472b9397607117900718a1bc39273c8122e4e6f54ee3
cites cdi_FETCH-LOGICAL-c380t-95dca322e7b33e926bd57472b9397607117900718a1bc39273c8122e4e6f54ee3
container_end_page 5818
container_issue 4
container_start_page 5811
container_title IEEE robotics and automation letters
container_volume 5
creator Nuelle, Kathrin
Sterneck, Tim
Lilge, Sven
Xiong, Dezhu
Burgner-Kahrs, Jessica
Ortmaier, Tobias
description In this work, a novel planar parallel continuum robot (PCR) is introduced, consisting of three kinematic chains that are coupled at a triangular end-effector platform and include tendon-actuated continuum segments. The kinematics of the resulting structure are derived by adapting the descriptions for conventional planar parallel manipulators to include constant curvature bending of the utilized continuous segments. To account for friction and non-linear material effects, a data-driven model is used to relate tendon displacements and curvature of the utilized continuum segments. A calibration of the derived kinematic model is conducted to specifically represent the constructed prototype. This includes the calibration of geometric parameters for each kinematic chain and for the end-effector platform. During evaluation, positioning repeatability of 1.0% in relation to one continuum segment length of the robot, and positioning accuracy of 1.4%, are achieved. These results are comparable to commonly used kineto-static modeling approaches for PCR. The presented model achieves high path accuracies regarding the robot's end-effector pose in an open-loop control scenario.
doi_str_mv 10.1109/LRA.2020.3010213
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2429904071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9143427</ieee_id><sourcerecordid>2429904071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-95dca322e7b33e926bd57472b9397607117900718a1bc39273c8122e4e6f54ee3</originalsourceid><addsrcrecordid>eNpNkN1LwzAUxYMoOObeBV8Cvq7zJmmb5XGU-QETx5gvvoS0vZWOLJlpK_jfmzkRn-4Hv3Pv4RByzWDGGKi71WYx48BhJoABZ-KMjLiQMhEyz8__9Zdk0nU7AGAZl0JlI_L27Gu0rXuf0sLYtgymb72bUuNquvw0dviZqW-ooVt0tXfJourjFmu6tsaZQNcmGGvR0sK7vnXDsKcbX_r-ilw0xnY4-a1j8nq_3BaPyerl4alYrJJKzKFPVFZXRnCOshQCFc_LOpOp5KUSSuYgGZMKYpkbVlZCRd_VnEU8xbzJUkQxJrenu4fgPwbser3zQ3DxpeYpVwrSqI4UnKgq-K4L2OhDaPcmfGkG-hiijiHqY4j6N8QouTlJWkT8wxVLRRpdfAOGl2sb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429904071</pqid></control><display><type>article</type><title>Modeling, Calibration, and Evaluation of a Tendon-Actuated Planar Parallel Continuum Robot</title><source>IEEE Xplore (Online service)</source><creator>Nuelle, Kathrin ; Sterneck, Tim ; Lilge, Sven ; Xiong, Dezhu ; Burgner-Kahrs, Jessica ; Ortmaier, Tobias</creator><creatorcontrib>Nuelle, Kathrin ; Sterneck, Tim ; Lilge, Sven ; Xiong, Dezhu ; Burgner-Kahrs, Jessica ; Ortmaier, Tobias</creatorcontrib><description>In this work, a novel planar parallel continuum robot (PCR) is introduced, consisting of three kinematic chains that are coupled at a triangular end-effector platform and include tendon-actuated continuum segments. The kinematics of the resulting structure are derived by adapting the descriptions for conventional planar parallel manipulators to include constant curvature bending of the utilized continuous segments. To account for friction and non-linear material effects, a data-driven model is used to relate tendon displacements and curvature of the utilized continuum segments. A calibration of the derived kinematic model is conducted to specifically represent the constructed prototype. This includes the calibration of geometric parameters for each kinematic chain and for the end-effector platform. During evaluation, positioning repeatability of 1.0% in relation to one continuum segment length of the robot, and positioning accuracy of 1.4%, are achieved. These results are comparable to commonly used kineto-static modeling approaches for PCR. The presented model achieves high path accuracies regarding the robot's end-effector pose in an open-loop control scenario.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2020.3010213</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Calibration ; calibration and identification ; Chains ; Curvature ; Flexible robots ; Kinematics ; Legged locomotion ; Model accuracy ; Modelling ; Parallel robots ; Prototypes ; Robots ; Segments ; Tendons</subject><ispartof>IEEE robotics and automation letters, 2020-10, Vol.5 (4), p.5811-5818</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-95dca322e7b33e926bd57472b9397607117900718a1bc39273c8122e4e6f54ee3</citedby><cites>FETCH-LOGICAL-c380t-95dca322e7b33e926bd57472b9397607117900718a1bc39273c8122e4e6f54ee3</cites><orcidid>0000-0003-1644-3685 ; 0000-0002-2904-9903 ; 0000-0001-8503-0273 ; 0000-0001-9185-3970</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9143427$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,54783</link.rule.ids></links><search><creatorcontrib>Nuelle, Kathrin</creatorcontrib><creatorcontrib>Sterneck, Tim</creatorcontrib><creatorcontrib>Lilge, Sven</creatorcontrib><creatorcontrib>Xiong, Dezhu</creatorcontrib><creatorcontrib>Burgner-Kahrs, Jessica</creatorcontrib><creatorcontrib>Ortmaier, Tobias</creatorcontrib><title>Modeling, Calibration, and Evaluation of a Tendon-Actuated Planar Parallel Continuum Robot</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>In this work, a novel planar parallel continuum robot (PCR) is introduced, consisting of three kinematic chains that are coupled at a triangular end-effector platform and include tendon-actuated continuum segments. The kinematics of the resulting structure are derived by adapting the descriptions for conventional planar parallel manipulators to include constant curvature bending of the utilized continuous segments. To account for friction and non-linear material effects, a data-driven model is used to relate tendon displacements and curvature of the utilized continuum segments. A calibration of the derived kinematic model is conducted to specifically represent the constructed prototype. This includes the calibration of geometric parameters for each kinematic chain and for the end-effector platform. During evaluation, positioning repeatability of 1.0% in relation to one continuum segment length of the robot, and positioning accuracy of 1.4%, are achieved. These results are comparable to commonly used kineto-static modeling approaches for PCR. The presented model achieves high path accuracies regarding the robot's end-effector pose in an open-loop control scenario.</description><subject>Calibration</subject><subject>calibration and identification</subject><subject>Chains</subject><subject>Curvature</subject><subject>Flexible robots</subject><subject>Kinematics</subject><subject>Legged locomotion</subject><subject>Model accuracy</subject><subject>Modelling</subject><subject>Parallel robots</subject><subject>Prototypes</subject><subject>Robots</subject><subject>Segments</subject><subject>Tendons</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkN1LwzAUxYMoOObeBV8Cvq7zJmmb5XGU-QETx5gvvoS0vZWOLJlpK_jfmzkRn-4Hv3Pv4RByzWDGGKi71WYx48BhJoABZ-KMjLiQMhEyz8__9Zdk0nU7AGAZl0JlI_L27Gu0rXuf0sLYtgymb72bUuNquvw0dviZqW-ooVt0tXfJourjFmu6tsaZQNcmGGvR0sK7vnXDsKcbX_r-ilw0xnY4-a1j8nq_3BaPyerl4alYrJJKzKFPVFZXRnCOshQCFc_LOpOp5KUSSuYgGZMKYpkbVlZCRd_VnEU8xbzJUkQxJrenu4fgPwbser3zQ3DxpeYpVwrSqI4UnKgq-K4L2OhDaPcmfGkG-hiijiHqY4j6N8QouTlJWkT8wxVLRRpdfAOGl2sb</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Nuelle, Kathrin</creator><creator>Sterneck, Tim</creator><creator>Lilge, Sven</creator><creator>Xiong, Dezhu</creator><creator>Burgner-Kahrs, Jessica</creator><creator>Ortmaier, Tobias</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1644-3685</orcidid><orcidid>https://orcid.org/0000-0002-2904-9903</orcidid><orcidid>https://orcid.org/0000-0001-8503-0273</orcidid><orcidid>https://orcid.org/0000-0001-9185-3970</orcidid></search><sort><creationdate>20201001</creationdate><title>Modeling, Calibration, and Evaluation of a Tendon-Actuated Planar Parallel Continuum Robot</title><author>Nuelle, Kathrin ; Sterneck, Tim ; Lilge, Sven ; Xiong, Dezhu ; Burgner-Kahrs, Jessica ; Ortmaier, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-95dca322e7b33e926bd57472b9397607117900718a1bc39273c8122e4e6f54ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Calibration</topic><topic>calibration and identification</topic><topic>Chains</topic><topic>Curvature</topic><topic>Flexible robots</topic><topic>Kinematics</topic><topic>Legged locomotion</topic><topic>Model accuracy</topic><topic>Modelling</topic><topic>Parallel robots</topic><topic>Prototypes</topic><topic>Robots</topic><topic>Segments</topic><topic>Tendons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nuelle, Kathrin</creatorcontrib><creatorcontrib>Sterneck, Tim</creatorcontrib><creatorcontrib>Lilge, Sven</creatorcontrib><creatorcontrib>Xiong, Dezhu</creatorcontrib><creatorcontrib>Burgner-Kahrs, Jessica</creatorcontrib><creatorcontrib>Ortmaier, Tobias</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nuelle, Kathrin</au><au>Sterneck, Tim</au><au>Lilge, Sven</au><au>Xiong, Dezhu</au><au>Burgner-Kahrs, Jessica</au><au>Ortmaier, Tobias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling, Calibration, and Evaluation of a Tendon-Actuated Planar Parallel Continuum Robot</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>5</volume><issue>4</issue><spage>5811</spage><epage>5818</epage><pages>5811-5818</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>In this work, a novel planar parallel continuum robot (PCR) is introduced, consisting of three kinematic chains that are coupled at a triangular end-effector platform and include tendon-actuated continuum segments. The kinematics of the resulting structure are derived by adapting the descriptions for conventional planar parallel manipulators to include constant curvature bending of the utilized continuous segments. To account for friction and non-linear material effects, a data-driven model is used to relate tendon displacements and curvature of the utilized continuum segments. A calibration of the derived kinematic model is conducted to specifically represent the constructed prototype. This includes the calibration of geometric parameters for each kinematic chain and for the end-effector platform. During evaluation, positioning repeatability of 1.0% in relation to one continuum segment length of the robot, and positioning accuracy of 1.4%, are achieved. These results are comparable to commonly used kineto-static modeling approaches for PCR. The presented model achieves high path accuracies regarding the robot's end-effector pose in an open-loop control scenario.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2020.3010213</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1644-3685</orcidid><orcidid>https://orcid.org/0000-0002-2904-9903</orcidid><orcidid>https://orcid.org/0000-0001-8503-0273</orcidid><orcidid>https://orcid.org/0000-0001-9185-3970</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2020-10, Vol.5 (4), p.5811-5818
issn 2377-3766
2377-3766
language eng
recordid cdi_proquest_journals_2429904071
source IEEE Xplore (Online service)
subjects Calibration
calibration and identification
Chains
Curvature
Flexible robots
Kinematics
Legged locomotion
Model accuracy
Modelling
Parallel robots
Prototypes
Robots
Segments
Tendons
title Modeling, Calibration, and Evaluation of a Tendon-Actuated Planar Parallel Continuum Robot
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A33%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling,%20Calibration,%20and%20Evaluation%20of%20a%20Tendon-Actuated%20Planar%20Parallel%20Continuum%20Robot&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Nuelle,%20Kathrin&rft.date=2020-10-01&rft.volume=5&rft.issue=4&rft.spage=5811&rft.epage=5818&rft.pages=5811-5818&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2020.3010213&rft_dat=%3Cproquest_ieee_%3E2429904071%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-95dca322e7b33e926bd57472b9397607117900718a1bc39273c8122e4e6f54ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2429904071&rft_id=info:pmid/&rft_ieee_id=9143427&rfr_iscdi=true