Loading…
Modeling, Calibration, and Evaluation of a Tendon-Actuated Planar Parallel Continuum Robot
In this work, a novel planar parallel continuum robot (PCR) is introduced, consisting of three kinematic chains that are coupled at a triangular end-effector platform and include tendon-actuated continuum segments. The kinematics of the resulting structure are derived by adapting the descriptions fo...
Saved in:
Published in: | IEEE robotics and automation letters 2020-10, Vol.5 (4), p.5811-5818 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c380t-95dca322e7b33e926bd57472b9397607117900718a1bc39273c8122e4e6f54ee3 |
---|---|
cites | cdi_FETCH-LOGICAL-c380t-95dca322e7b33e926bd57472b9397607117900718a1bc39273c8122e4e6f54ee3 |
container_end_page | 5818 |
container_issue | 4 |
container_start_page | 5811 |
container_title | IEEE robotics and automation letters |
container_volume | 5 |
creator | Nuelle, Kathrin Sterneck, Tim Lilge, Sven Xiong, Dezhu Burgner-Kahrs, Jessica Ortmaier, Tobias |
description | In this work, a novel planar parallel continuum robot (PCR) is introduced, consisting of three kinematic chains that are coupled at a triangular end-effector platform and include tendon-actuated continuum segments. The kinematics of the resulting structure are derived by adapting the descriptions for conventional planar parallel manipulators to include constant curvature bending of the utilized continuous segments. To account for friction and non-linear material effects, a data-driven model is used to relate tendon displacements and curvature of the utilized continuum segments. A calibration of the derived kinematic model is conducted to specifically represent the constructed prototype. This includes the calibration of geometric parameters for each kinematic chain and for the end-effector platform. During evaluation, positioning repeatability of 1.0% in relation to one continuum segment length of the robot, and positioning accuracy of 1.4%, are achieved. These results are comparable to commonly used kineto-static modeling approaches for PCR. The presented model achieves high path accuracies regarding the robot's end-effector pose in an open-loop control scenario. |
doi_str_mv | 10.1109/LRA.2020.3010213 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2429904071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9143427</ieee_id><sourcerecordid>2429904071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-95dca322e7b33e926bd57472b9397607117900718a1bc39273c8122e4e6f54ee3</originalsourceid><addsrcrecordid>eNpNkN1LwzAUxYMoOObeBV8Cvq7zJmmb5XGU-QETx5gvvoS0vZWOLJlpK_jfmzkRn-4Hv3Pv4RByzWDGGKi71WYx48BhJoABZ-KMjLiQMhEyz8__9Zdk0nU7AGAZl0JlI_L27Gu0rXuf0sLYtgymb72bUuNquvw0dviZqW-ooVt0tXfJourjFmu6tsaZQNcmGGvR0sK7vnXDsKcbX_r-ilw0xnY4-a1j8nq_3BaPyerl4alYrJJKzKFPVFZXRnCOshQCFc_LOpOp5KUSSuYgGZMKYpkbVlZCRd_VnEU8xbzJUkQxJrenu4fgPwbser3zQ3DxpeYpVwrSqI4UnKgq-K4L2OhDaPcmfGkG-hiijiHqY4j6N8QouTlJWkT8wxVLRRpdfAOGl2sb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429904071</pqid></control><display><type>article</type><title>Modeling, Calibration, and Evaluation of a Tendon-Actuated Planar Parallel Continuum Robot</title><source>IEEE Xplore (Online service)</source><creator>Nuelle, Kathrin ; Sterneck, Tim ; Lilge, Sven ; Xiong, Dezhu ; Burgner-Kahrs, Jessica ; Ortmaier, Tobias</creator><creatorcontrib>Nuelle, Kathrin ; Sterneck, Tim ; Lilge, Sven ; Xiong, Dezhu ; Burgner-Kahrs, Jessica ; Ortmaier, Tobias</creatorcontrib><description>In this work, a novel planar parallel continuum robot (PCR) is introduced, consisting of three kinematic chains that are coupled at a triangular end-effector platform and include tendon-actuated continuum segments. The kinematics of the resulting structure are derived by adapting the descriptions for conventional planar parallel manipulators to include constant curvature bending of the utilized continuous segments. To account for friction and non-linear material effects, a data-driven model is used to relate tendon displacements and curvature of the utilized continuum segments. A calibration of the derived kinematic model is conducted to specifically represent the constructed prototype. This includes the calibration of geometric parameters for each kinematic chain and for the end-effector platform. During evaluation, positioning repeatability of 1.0% in relation to one continuum segment length of the robot, and positioning accuracy of 1.4%, are achieved. These results are comparable to commonly used kineto-static modeling approaches for PCR. The presented model achieves high path accuracies regarding the robot's end-effector pose in an open-loop control scenario.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2020.3010213</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Calibration ; calibration and identification ; Chains ; Curvature ; Flexible robots ; Kinematics ; Legged locomotion ; Model accuracy ; Modelling ; Parallel robots ; Prototypes ; Robots ; Segments ; Tendons</subject><ispartof>IEEE robotics and automation letters, 2020-10, Vol.5 (4), p.5811-5818</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-95dca322e7b33e926bd57472b9397607117900718a1bc39273c8122e4e6f54ee3</citedby><cites>FETCH-LOGICAL-c380t-95dca322e7b33e926bd57472b9397607117900718a1bc39273c8122e4e6f54ee3</cites><orcidid>0000-0003-1644-3685 ; 0000-0002-2904-9903 ; 0000-0001-8503-0273 ; 0000-0001-9185-3970</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9143427$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,54783</link.rule.ids></links><search><creatorcontrib>Nuelle, Kathrin</creatorcontrib><creatorcontrib>Sterneck, Tim</creatorcontrib><creatorcontrib>Lilge, Sven</creatorcontrib><creatorcontrib>Xiong, Dezhu</creatorcontrib><creatorcontrib>Burgner-Kahrs, Jessica</creatorcontrib><creatorcontrib>Ortmaier, Tobias</creatorcontrib><title>Modeling, Calibration, and Evaluation of a Tendon-Actuated Planar Parallel Continuum Robot</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>In this work, a novel planar parallel continuum robot (PCR) is introduced, consisting of three kinematic chains that are coupled at a triangular end-effector platform and include tendon-actuated continuum segments. The kinematics of the resulting structure are derived by adapting the descriptions for conventional planar parallel manipulators to include constant curvature bending of the utilized continuous segments. To account for friction and non-linear material effects, a data-driven model is used to relate tendon displacements and curvature of the utilized continuum segments. A calibration of the derived kinematic model is conducted to specifically represent the constructed prototype. This includes the calibration of geometric parameters for each kinematic chain and for the end-effector platform. During evaluation, positioning repeatability of 1.0% in relation to one continuum segment length of the robot, and positioning accuracy of 1.4%, are achieved. These results are comparable to commonly used kineto-static modeling approaches for PCR. The presented model achieves high path accuracies regarding the robot's end-effector pose in an open-loop control scenario.</description><subject>Calibration</subject><subject>calibration and identification</subject><subject>Chains</subject><subject>Curvature</subject><subject>Flexible robots</subject><subject>Kinematics</subject><subject>Legged locomotion</subject><subject>Model accuracy</subject><subject>Modelling</subject><subject>Parallel robots</subject><subject>Prototypes</subject><subject>Robots</subject><subject>Segments</subject><subject>Tendons</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkN1LwzAUxYMoOObeBV8Cvq7zJmmb5XGU-QETx5gvvoS0vZWOLJlpK_jfmzkRn-4Hv3Pv4RByzWDGGKi71WYx48BhJoABZ-KMjLiQMhEyz8__9Zdk0nU7AGAZl0JlI_L27Gu0rXuf0sLYtgymb72bUuNquvw0dviZqW-ooVt0tXfJourjFmu6tsaZQNcmGGvR0sK7vnXDsKcbX_r-ilw0xnY4-a1j8nq_3BaPyerl4alYrJJKzKFPVFZXRnCOshQCFc_LOpOp5KUSSuYgGZMKYpkbVlZCRd_VnEU8xbzJUkQxJrenu4fgPwbser3zQ3DxpeYpVwrSqI4UnKgq-K4L2OhDaPcmfGkG-hiijiHqY4j6N8QouTlJWkT8wxVLRRpdfAOGl2sb</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Nuelle, Kathrin</creator><creator>Sterneck, Tim</creator><creator>Lilge, Sven</creator><creator>Xiong, Dezhu</creator><creator>Burgner-Kahrs, Jessica</creator><creator>Ortmaier, Tobias</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1644-3685</orcidid><orcidid>https://orcid.org/0000-0002-2904-9903</orcidid><orcidid>https://orcid.org/0000-0001-8503-0273</orcidid><orcidid>https://orcid.org/0000-0001-9185-3970</orcidid></search><sort><creationdate>20201001</creationdate><title>Modeling, Calibration, and Evaluation of a Tendon-Actuated Planar Parallel Continuum Robot</title><author>Nuelle, Kathrin ; Sterneck, Tim ; Lilge, Sven ; Xiong, Dezhu ; Burgner-Kahrs, Jessica ; Ortmaier, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-95dca322e7b33e926bd57472b9397607117900718a1bc39273c8122e4e6f54ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Calibration</topic><topic>calibration and identification</topic><topic>Chains</topic><topic>Curvature</topic><topic>Flexible robots</topic><topic>Kinematics</topic><topic>Legged locomotion</topic><topic>Model accuracy</topic><topic>Modelling</topic><topic>Parallel robots</topic><topic>Prototypes</topic><topic>Robots</topic><topic>Segments</topic><topic>Tendons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nuelle, Kathrin</creatorcontrib><creatorcontrib>Sterneck, Tim</creatorcontrib><creatorcontrib>Lilge, Sven</creatorcontrib><creatorcontrib>Xiong, Dezhu</creatorcontrib><creatorcontrib>Burgner-Kahrs, Jessica</creatorcontrib><creatorcontrib>Ortmaier, Tobias</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nuelle, Kathrin</au><au>Sterneck, Tim</au><au>Lilge, Sven</au><au>Xiong, Dezhu</au><au>Burgner-Kahrs, Jessica</au><au>Ortmaier, Tobias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling, Calibration, and Evaluation of a Tendon-Actuated Planar Parallel Continuum Robot</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>5</volume><issue>4</issue><spage>5811</spage><epage>5818</epage><pages>5811-5818</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>In this work, a novel planar parallel continuum robot (PCR) is introduced, consisting of three kinematic chains that are coupled at a triangular end-effector platform and include tendon-actuated continuum segments. The kinematics of the resulting structure are derived by adapting the descriptions for conventional planar parallel manipulators to include constant curvature bending of the utilized continuous segments. To account for friction and non-linear material effects, a data-driven model is used to relate tendon displacements and curvature of the utilized continuum segments. A calibration of the derived kinematic model is conducted to specifically represent the constructed prototype. This includes the calibration of geometric parameters for each kinematic chain and for the end-effector platform. During evaluation, positioning repeatability of 1.0% in relation to one continuum segment length of the robot, and positioning accuracy of 1.4%, are achieved. These results are comparable to commonly used kineto-static modeling approaches for PCR. The presented model achieves high path accuracies regarding the robot's end-effector pose in an open-loop control scenario.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2020.3010213</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1644-3685</orcidid><orcidid>https://orcid.org/0000-0002-2904-9903</orcidid><orcidid>https://orcid.org/0000-0001-8503-0273</orcidid><orcidid>https://orcid.org/0000-0001-9185-3970</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2020-10, Vol.5 (4), p.5811-5818 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_proquest_journals_2429904071 |
source | IEEE Xplore (Online service) |
subjects | Calibration calibration and identification Chains Curvature Flexible robots Kinematics Legged locomotion Model accuracy Modelling Parallel robots Prototypes Robots Segments Tendons |
title | Modeling, Calibration, and Evaluation of a Tendon-Actuated Planar Parallel Continuum Robot |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A33%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling,%20Calibration,%20and%20Evaluation%20of%20a%20Tendon-Actuated%20Planar%20Parallel%20Continuum%20Robot&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Nuelle,%20Kathrin&rft.date=2020-10-01&rft.volume=5&rft.issue=4&rft.spage=5811&rft.epage=5818&rft.pages=5811-5818&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2020.3010213&rft_dat=%3Cproquest_ieee_%3E2429904071%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-95dca322e7b33e926bd57472b9397607117900718a1bc39273c8122e4e6f54ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2429904071&rft_id=info:pmid/&rft_ieee_id=9143427&rfr_iscdi=true |