Loading…

Discontinuous solutions of Hamilton-Jacobi equations versus Radon measure-valued solutions of scalar conservation laws: Disappearance of singularities

Let \(H\) be a bounded and Lipschitz continuous function. We consider discontinuous viscosity solutions of the Hamilton-Jacobi equation \(U_{t}+H(U_x)=0\) and signed Radon measure valued entropy solutions of the conservation law \(u_{t}+[H(u)]_x=0\). After having proved a precise statement of the fo...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-07
Main Authors: Bertsch, M, Smarrazzo, F, Terracina, A, Tesei, A
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bertsch, M
Smarrazzo, F
Terracina, A
Tesei, A
description Let \(H\) be a bounded and Lipschitz continuous function. We consider discontinuous viscosity solutions of the Hamilton-Jacobi equation \(U_{t}+H(U_x)=0\) and signed Radon measure valued entropy solutions of the conservation law \(u_{t}+[H(u)]_x=0\). After having proved a precise statement of the formal relation \(U_x=u\), we establish estimates for the (strictly positive!) times at which singularities of the solutions disappear. Here singularities are jump discontinuities in case of the Hamilton-Jacobi equation and signed singular measures in case of the conservation law.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2429942085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429942085</sourcerecordid><originalsourceid>FETCH-proquest_journals_24299420853</originalsourceid><addsrcrecordid>eNqNjcuKAjEQRYMgKOo_BFw3tOnu8bH1gbiU2UtNW0okptpUqv0Tv9egbtzN6i7Oufd2VN8UxSSblcb01Ij5kue5-Zmaqir66rGyXJOP1gsJayYn0ZJnTSe9hat1kXy2g5r-rMabwBu2GDjZeziS11cEloBZC07w-D3BNTgIOj0whvbV1g7uvNDpF5oGIYCv8aVaf5Yk22iRh6p7Asc4-uRAjTfr3-U2awLdBDkeLiTBJ3QwpZnPS5PPquJ_1hOGzVsm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429942085</pqid></control><display><type>article</type><title>Discontinuous solutions of Hamilton-Jacobi equations versus Radon measure-valued solutions of scalar conservation laws: Disappearance of singularities</title><source>Publicly Available Content Database</source><creator>Bertsch, M ; Smarrazzo, F ; Terracina, A ; Tesei, A</creator><creatorcontrib>Bertsch, M ; Smarrazzo, F ; Terracina, A ; Tesei, A</creatorcontrib><description>Let \(H\) be a bounded and Lipschitz continuous function. We consider discontinuous viscosity solutions of the Hamilton-Jacobi equation \(U_{t}+H(U_x)=0\) and signed Radon measure valued entropy solutions of the conservation law \(u_{t}+[H(u)]_x=0\). After having proved a precise statement of the formal relation \(U_x=u\), we establish estimates for the (strictly positive!) times at which singularities of the solutions disappear. Here singularities are jump discontinuities in case of the Hamilton-Jacobi equation and signed singular measures in case of the conservation law.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Conservation laws ; Continuity (mathematics) ; Discontinuity ; Hamilton-Jacobi equation ; Linear equations ; Radon ; Singularities</subject><ispartof>arXiv.org, 2020-07</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2429942085?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Bertsch, M</creatorcontrib><creatorcontrib>Smarrazzo, F</creatorcontrib><creatorcontrib>Terracina, A</creatorcontrib><creatorcontrib>Tesei, A</creatorcontrib><title>Discontinuous solutions of Hamilton-Jacobi equations versus Radon measure-valued solutions of scalar conservation laws: Disappearance of singularities</title><title>arXiv.org</title><description>Let \(H\) be a bounded and Lipschitz continuous function. We consider discontinuous viscosity solutions of the Hamilton-Jacobi equation \(U_{t}+H(U_x)=0\) and signed Radon measure valued entropy solutions of the conservation law \(u_{t}+[H(u)]_x=0\). After having proved a precise statement of the formal relation \(U_x=u\), we establish estimates for the (strictly positive!) times at which singularities of the solutions disappear. Here singularities are jump discontinuities in case of the Hamilton-Jacobi equation and signed singular measures in case of the conservation law.</description><subject>Conservation laws</subject><subject>Continuity (mathematics)</subject><subject>Discontinuity</subject><subject>Hamilton-Jacobi equation</subject><subject>Linear equations</subject><subject>Radon</subject><subject>Singularities</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjcuKAjEQRYMgKOo_BFw3tOnu8bH1gbiU2UtNW0okptpUqv0Tv9egbtzN6i7Oufd2VN8UxSSblcb01Ij5kue5-Zmaqir66rGyXJOP1gsJayYn0ZJnTSe9hat1kXy2g5r-rMabwBu2GDjZeziS11cEloBZC07w-D3BNTgIOj0whvbV1g7uvNDpF5oGIYCv8aVaf5Yk22iRh6p7Asc4-uRAjTfr3-U2awLdBDkeLiTBJ3QwpZnPS5PPquJ_1hOGzVsm</recordid><startdate>20200731</startdate><enddate>20200731</enddate><creator>Bertsch, M</creator><creator>Smarrazzo, F</creator><creator>Terracina, A</creator><creator>Tesei, A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200731</creationdate><title>Discontinuous solutions of Hamilton-Jacobi equations versus Radon measure-valued solutions of scalar conservation laws: Disappearance of singularities</title><author>Bertsch, M ; Smarrazzo, F ; Terracina, A ; Tesei, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24299420853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Conservation laws</topic><topic>Continuity (mathematics)</topic><topic>Discontinuity</topic><topic>Hamilton-Jacobi equation</topic><topic>Linear equations</topic><topic>Radon</topic><topic>Singularities</topic><toplevel>online_resources</toplevel><creatorcontrib>Bertsch, M</creatorcontrib><creatorcontrib>Smarrazzo, F</creatorcontrib><creatorcontrib>Terracina, A</creatorcontrib><creatorcontrib>Tesei, A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bertsch, M</au><au>Smarrazzo, F</au><au>Terracina, A</au><au>Tesei, A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Discontinuous solutions of Hamilton-Jacobi equations versus Radon measure-valued solutions of scalar conservation laws: Disappearance of singularities</atitle><jtitle>arXiv.org</jtitle><date>2020-07-31</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Let \(H\) be a bounded and Lipschitz continuous function. We consider discontinuous viscosity solutions of the Hamilton-Jacobi equation \(U_{t}+H(U_x)=0\) and signed Radon measure valued entropy solutions of the conservation law \(u_{t}+[H(u)]_x=0\). After having proved a precise statement of the formal relation \(U_x=u\), we establish estimates for the (strictly positive!) times at which singularities of the solutions disappear. Here singularities are jump discontinuities in case of the Hamilton-Jacobi equation and signed singular measures in case of the conservation law.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2429942085
source Publicly Available Content Database
subjects Conservation laws
Continuity (mathematics)
Discontinuity
Hamilton-Jacobi equation
Linear equations
Radon
Singularities
title Discontinuous solutions of Hamilton-Jacobi equations versus Radon measure-valued solutions of scalar conservation laws: Disappearance of singularities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A32%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Discontinuous%20solutions%20of%20Hamilton-Jacobi%20equations%20versus%20Radon%20measure-valued%20solutions%20of%20scalar%20conservation%20laws:%20Disappearance%20of%20singularities&rft.jtitle=arXiv.org&rft.au=Bertsch,%20M&rft.date=2020-07-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2429942085%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24299420853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2429942085&rft_id=info:pmid/&rfr_iscdi=true