Loading…
Efficient State Estimation for Gas Pipeline Networks via Low-Rank Approximations
In this paper we investigate the performance of projection-based low-rank approximations in Kalman filtering. For large-scale gas pipeline networks structure-preserving model order reduction has turned out to be an advantageous way to compute accurate solutions with much less computational effort. F...
Saved in:
Published in: | arXiv.org 2021-05 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we investigate the performance of projection-based low-rank approximations in Kalman filtering. For large-scale gas pipeline networks structure-preserving model order reduction has turned out to be an advantageous way to compute accurate solutions with much less computational effort. For state estimation we propose to combine these low-rank models with Kalman filtering and show the advantages of this procedure to established low-rank Kalman filters in terms of efficiency and quality of the estimate. |
---|---|
ISSN: | 2331-8422 |