Loading…
Effect of device parameters on improving the quantum efficiency of a lateral Si p–i–n photodetector
Quantum efficiency of CMOS compatible multi-diode lateral Si p–i–n photodetector is calculated using two-dimensional transport in the form of carrier diffusion from substrate along the vertical direction and drift along the horizontal (lateral) direction. The model verified with experimental data fr...
Saved in:
Published in: | Optical and quantum electronics 2020-08, Vol.52 (8), Article 371 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quantum efficiency of CMOS compatible multi-diode lateral Si p–i–n photodetector is calculated using two-dimensional transport in the form of carrier diffusion from substrate along the vertical direction and drift along the horizontal (lateral) direction. The model verified with experimental data from literature are used to compute and plot the quantum efficiency as a function of device parameters, such as number of diodes, trench depth, finger spacing, etc. Results show that the device parameters can be suitably chosen to improve the quantum efficiency. Possible optimum designs with respect to some parameters are also indicated for maximum quantum efficiency and maximum bandwidth-quantum efficiency product. |
---|---|
ISSN: | 0306-8919 1572-817X |
DOI: | 10.1007/s11082-020-02490-7 |