Loading…

Order from chaos in quantum walks on cyclic graphs

It has been shown classically that combining two chaotic random walks can yield an ordered(periodic) walk. Our aim in this paper is to find a quantum analog for this rather counter-intuitive result. We study chaotic and periodic nature of cyclic quantum walks and focus on a unique situation wherein...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-06
Main Authors: Panda, Abhisek, Benjamin, Colin
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Panda, Abhisek
Benjamin, Colin
description It has been shown classically that combining two chaotic random walks can yield an ordered(periodic) walk. Our aim in this paper is to find a quantum analog for this rather counter-intuitive result. We study chaotic and periodic nature of cyclic quantum walks and focus on a unique situation wherein a periodic quantum walk on a 3-cycle graph is generated via a deterministic combination of two chaotic quantum walks on the same graph. We extend our results to even-numbered cyclic graphs, specifically a 4-cycle graph too. Our results will be relevant in quantum cryptography and quantum chaos control.
doi_str_mv 10.48550/arxiv.2008.00316
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2430272644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430272644</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524-93be2280980b4fbccf810232411e04e56573c994a1742cc2a4a68fee53927463</originalsourceid><addsrcrecordid>eNotzctKAzEUgOEgCJbaB3AXcD3jyTknmWQpxRsUutB9ycTETp3OtEnHy9sr6Orffb8QVwpqtlrDjc9f3UeNALYGIGXOxAyJVGUZ8UIsStkBAJoGtaaZwHV-jVmmPO5l2PqxyG6Qx8kPp2kvP33_XuQ4yPAd-i7It-wP23IpzpPvS1z8dy6e7-9elo_Vav3wtLxdVV4jV47aiGjBWWg5tSEkqwAJWakIHLXRDQXn2KuGMQT07I1NMWpy2LChubj-Uw95PE6xnDa7ccrD73CDTIANGmb6AfnbQ-0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430272644</pqid></control><display><type>article</type><title>Order from chaos in quantum walks on cyclic graphs</title><source>Publicly Available Content Database</source><creator>Panda, Abhisek ; Benjamin, Colin</creator><creatorcontrib>Panda, Abhisek ; Benjamin, Colin</creatorcontrib><description>It has been shown classically that combining two chaotic random walks can yield an ordered(periodic) walk. Our aim in this paper is to find a quantum analog for this rather counter-intuitive result. We study chaotic and periodic nature of cyclic quantum walks and focus on a unique situation wherein a periodic quantum walk on a 3-cycle graph is generated via a deterministic combination of two chaotic quantum walks on the same graph. We extend our results to even-numbered cyclic graphs, specifically a 4-cycle graph too. Our results will be relevant in quantum cryptography and quantum chaos control.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2008.00316</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Random walk</subject><ispartof>arXiv.org, 2021-06</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2430272644?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Panda, Abhisek</creatorcontrib><creatorcontrib>Benjamin, Colin</creatorcontrib><title>Order from chaos in quantum walks on cyclic graphs</title><title>arXiv.org</title><description>It has been shown classically that combining two chaotic random walks can yield an ordered(periodic) walk. Our aim in this paper is to find a quantum analog for this rather counter-intuitive result. We study chaotic and periodic nature of cyclic quantum walks and focus on a unique situation wherein a periodic quantum walk on a 3-cycle graph is generated via a deterministic combination of two chaotic quantum walks on the same graph. We extend our results to even-numbered cyclic graphs, specifically a 4-cycle graph too. Our results will be relevant in quantum cryptography and quantum chaos control.</description><subject>Random walk</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotzctKAzEUgOEgCJbaB3AXcD3jyTknmWQpxRsUutB9ycTETp3OtEnHy9sr6Orffb8QVwpqtlrDjc9f3UeNALYGIGXOxAyJVGUZ8UIsStkBAJoGtaaZwHV-jVmmPO5l2PqxyG6Qx8kPp2kvP33_XuQ4yPAd-i7It-wP23IpzpPvS1z8dy6e7-9elo_Vav3wtLxdVV4jV47aiGjBWWg5tSEkqwAJWakIHLXRDQXn2KuGMQT07I1NMWpy2LChubj-Uw95PE6xnDa7ccrD73CDTIANGmb6AfnbQ-0</recordid><startdate>20210623</startdate><enddate>20210623</enddate><creator>Panda, Abhisek</creator><creator>Benjamin, Colin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210623</creationdate><title>Order from chaos in quantum walks on cyclic graphs</title><author>Panda, Abhisek ; Benjamin, Colin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524-93be2280980b4fbccf810232411e04e56573c994a1742cc2a4a68fee53927463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Random walk</topic><toplevel>online_resources</toplevel><creatorcontrib>Panda, Abhisek</creatorcontrib><creatorcontrib>Benjamin, Colin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panda, Abhisek</au><au>Benjamin, Colin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Order from chaos in quantum walks on cyclic graphs</atitle><jtitle>arXiv.org</jtitle><date>2021-06-23</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>It has been shown classically that combining two chaotic random walks can yield an ordered(periodic) walk. Our aim in this paper is to find a quantum analog for this rather counter-intuitive result. We study chaotic and periodic nature of cyclic quantum walks and focus on a unique situation wherein a periodic quantum walk on a 3-cycle graph is generated via a deterministic combination of two chaotic quantum walks on the same graph. We extend our results to even-numbered cyclic graphs, specifically a 4-cycle graph too. Our results will be relevant in quantum cryptography and quantum chaos control.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2008.00316</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2430272644
source Publicly Available Content Database
subjects Random walk
title Order from chaos in quantum walks on cyclic graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A20%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Order%20from%20chaos%20in%20quantum%20walks%20on%20cyclic%20graphs&rft.jtitle=arXiv.org&rft.au=Panda,%20Abhisek&rft.date=2021-06-23&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2008.00316&rft_dat=%3Cproquest%3E2430272644%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a524-93be2280980b4fbccf810232411e04e56573c994a1742cc2a4a68fee53927463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2430272644&rft_id=info:pmid/&rfr_iscdi=true