Loading…
Order from chaos in quantum walks on cyclic graphs
It has been shown classically that combining two chaotic random walks can yield an ordered(periodic) walk. Our aim in this paper is to find a quantum analog for this rather counter-intuitive result. We study chaotic and periodic nature of cyclic quantum walks and focus on a unique situation wherein...
Saved in:
Published in: | arXiv.org 2021-06 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Panda, Abhisek Benjamin, Colin |
description | It has been shown classically that combining two chaotic random walks can yield an ordered(periodic) walk. Our aim in this paper is to find a quantum analog for this rather counter-intuitive result. We study chaotic and periodic nature of cyclic quantum walks and focus on a unique situation wherein a periodic quantum walk on a 3-cycle graph is generated via a deterministic combination of two chaotic quantum walks on the same graph. We extend our results to even-numbered cyclic graphs, specifically a 4-cycle graph too. Our results will be relevant in quantum cryptography and quantum chaos control. |
doi_str_mv | 10.48550/arxiv.2008.00316 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2430272644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430272644</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524-93be2280980b4fbccf810232411e04e56573c994a1742cc2a4a68fee53927463</originalsourceid><addsrcrecordid>eNotzctKAzEUgOEgCJbaB3AXcD3jyTknmWQpxRsUutB9ycTETp3OtEnHy9sr6Orffb8QVwpqtlrDjc9f3UeNALYGIGXOxAyJVGUZ8UIsStkBAJoGtaaZwHV-jVmmPO5l2PqxyG6Qx8kPp2kvP33_XuQ4yPAd-i7It-wP23IpzpPvS1z8dy6e7-9elo_Vav3wtLxdVV4jV47aiGjBWWg5tSEkqwAJWakIHLXRDQXn2KuGMQT07I1NMWpy2LChubj-Uw95PE6xnDa7ccrD73CDTIANGmb6AfnbQ-0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430272644</pqid></control><display><type>article</type><title>Order from chaos in quantum walks on cyclic graphs</title><source>Publicly Available Content Database</source><creator>Panda, Abhisek ; Benjamin, Colin</creator><creatorcontrib>Panda, Abhisek ; Benjamin, Colin</creatorcontrib><description>It has been shown classically that combining two chaotic random walks can yield an ordered(periodic) walk. Our aim in this paper is to find a quantum analog for this rather counter-intuitive result. We study chaotic and periodic nature of cyclic quantum walks and focus on a unique situation wherein a periodic quantum walk on a 3-cycle graph is generated via a deterministic combination of two chaotic quantum walks on the same graph. We extend our results to even-numbered cyclic graphs, specifically a 4-cycle graph too. Our results will be relevant in quantum cryptography and quantum chaos control.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2008.00316</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Random walk</subject><ispartof>arXiv.org, 2021-06</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2430272644?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Panda, Abhisek</creatorcontrib><creatorcontrib>Benjamin, Colin</creatorcontrib><title>Order from chaos in quantum walks on cyclic graphs</title><title>arXiv.org</title><description>It has been shown classically that combining two chaotic random walks can yield an ordered(periodic) walk. Our aim in this paper is to find a quantum analog for this rather counter-intuitive result. We study chaotic and periodic nature of cyclic quantum walks and focus on a unique situation wherein a periodic quantum walk on a 3-cycle graph is generated via a deterministic combination of two chaotic quantum walks on the same graph. We extend our results to even-numbered cyclic graphs, specifically a 4-cycle graph too. Our results will be relevant in quantum cryptography and quantum chaos control.</description><subject>Random walk</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotzctKAzEUgOEgCJbaB3AXcD3jyTknmWQpxRsUutB9ycTETp3OtEnHy9sr6Orffb8QVwpqtlrDjc9f3UeNALYGIGXOxAyJVGUZ8UIsStkBAJoGtaaZwHV-jVmmPO5l2PqxyG6Qx8kPp2kvP33_XuQ4yPAd-i7It-wP23IpzpPvS1z8dy6e7-9elo_Vav3wtLxdVV4jV47aiGjBWWg5tSEkqwAJWakIHLXRDQXn2KuGMQT07I1NMWpy2LChubj-Uw95PE6xnDa7ccrD73CDTIANGmb6AfnbQ-0</recordid><startdate>20210623</startdate><enddate>20210623</enddate><creator>Panda, Abhisek</creator><creator>Benjamin, Colin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210623</creationdate><title>Order from chaos in quantum walks on cyclic graphs</title><author>Panda, Abhisek ; Benjamin, Colin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524-93be2280980b4fbccf810232411e04e56573c994a1742cc2a4a68fee53927463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Random walk</topic><toplevel>online_resources</toplevel><creatorcontrib>Panda, Abhisek</creatorcontrib><creatorcontrib>Benjamin, Colin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panda, Abhisek</au><au>Benjamin, Colin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Order from chaos in quantum walks on cyclic graphs</atitle><jtitle>arXiv.org</jtitle><date>2021-06-23</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>It has been shown classically that combining two chaotic random walks can yield an ordered(periodic) walk. Our aim in this paper is to find a quantum analog for this rather counter-intuitive result. We study chaotic and periodic nature of cyclic quantum walks and focus on a unique situation wherein a periodic quantum walk on a 3-cycle graph is generated via a deterministic combination of two chaotic quantum walks on the same graph. We extend our results to even-numbered cyclic graphs, specifically a 4-cycle graph too. Our results will be relevant in quantum cryptography and quantum chaos control.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2008.00316</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2430272644 |
source | Publicly Available Content Database |
subjects | Random walk |
title | Order from chaos in quantum walks on cyclic graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A20%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Order%20from%20chaos%20in%20quantum%20walks%20on%20cyclic%20graphs&rft.jtitle=arXiv.org&rft.au=Panda,%20Abhisek&rft.date=2021-06-23&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2008.00316&rft_dat=%3Cproquest%3E2430272644%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a524-93be2280980b4fbccf810232411e04e56573c994a1742cc2a4a68fee53927463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2430272644&rft_id=info:pmid/&rfr_iscdi=true |