Loading…
Computational study for a class of time-dependent singularly perturbed parabolic partial differential equation through tension spline
This article contributes a numerical technique for a class of singularly perturbed time delayed parabolic partial differential equation. A priori results of maximum principle, stability and bounds are discussed. The continuous problem is semi-discretized by the Crank–Nicolson based scheme in the tem...
Saved in:
Published in: | Computational & applied mathematics 2020-09, Vol.39 (3), Article 233 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-16266f674a8e169385809882d9ba75dc4657f61f1851f985acf08c834647ff5d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-16266f674a8e169385809882d9ba75dc4657f61f1851f985acf08c834647ff5d3 |
container_end_page | |
container_issue | 3 |
container_start_page | |
container_title | Computational & applied mathematics |
container_volume | 39 |
creator | Kumar, P. Murali Mohan Ravi Kanth, A. S. V. |
description | This article contributes a numerical technique for a class of singularly perturbed time delayed parabolic partial differential equation. A priori results of maximum principle, stability and bounds are discussed. The continuous problem is semi-discretized by the Crank–Nicolson based scheme in the temporal direction and then discretized by the tension spline scheme on non-uniform Shishkin mesh. Error estimation for the discretized problem is derived. To validate the theoretical findings, the numerical outcomes for linear and nonlinear problems are tested. |
doi_str_mv | 10.1007/s40314-020-01278-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2430392520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430392520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-16266f674a8e169385809882d9ba75dc4657f61f1851f985acf08c834647ff5d3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwApwscTasf-McUcWfhMQFzpab2G2qNE5t59AH4L1JGiRunHZHmm9WOwjdUrinAMVDEsCpIMCAAGWFJvIMLaiGggAHdo4WjHFNuAJ-ia5S2gHwggqxQN-rsO-HbHMTOtvilIf6iH2I2OKqtSnh4HFu9o7Urndd7bqMU9NthtbG9oh7F_MQ167GvY12HdqmmrbcjFF1472LIzAJdxhOJ3DexjBstji7Lk069W3TuWt04W2b3M3vXKKv56fP1St5_3h5Wz2-k4rTMhOqmFJeFcJqR1XJtdRQas3qcm0LWVdCycIr6qmW1Jda2sqDrjQXShTey5ov0d2c28dwGFzKZheGOD6eDBMceMkkg9HFZlcVQ0rRedPHZm_j0VAwU91mrtuMdZtT3UaOEJ-hNJq7jYt_0f9QPzQMhTk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430392520</pqid></control><display><type>article</type><title>Computational study for a class of time-dependent singularly perturbed parabolic partial differential equation through tension spline</title><source>Springer Nature</source><creator>Kumar, P. Murali Mohan ; Ravi Kanth, A. S. V.</creator><creatorcontrib>Kumar, P. Murali Mohan ; Ravi Kanth, A. S. V.</creatorcontrib><description>This article contributes a numerical technique for a class of singularly perturbed time delayed parabolic partial differential equation. A priori results of maximum principle, stability and bounds are discussed. The continuous problem is semi-discretized by the Crank–Nicolson based scheme in the temporal direction and then discretized by the tension spline scheme on non-uniform Shishkin mesh. Error estimation for the discretized problem is derived. To validate the theoretical findings, the numerical outcomes for linear and nonlinear problems are tested.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-020-01278-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Applied physics ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Discretization ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Maximum principle ; Parabolic differential equations ; Partial differential equations ; Time dependence</subject><ispartof>Computational & applied mathematics, 2020-09, Vol.39 (3), Article 233</ispartof><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2020</rights><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-16266f674a8e169385809882d9ba75dc4657f61f1851f985acf08c834647ff5d3</citedby><cites>FETCH-LOGICAL-c319t-16266f674a8e169385809882d9ba75dc4657f61f1851f985acf08c834647ff5d3</cites><orcidid>0000-0001-8472-9023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kumar, P. Murali Mohan</creatorcontrib><creatorcontrib>Ravi Kanth, A. S. V.</creatorcontrib><title>Computational study for a class of time-dependent singularly perturbed parabolic partial differential equation through tension spline</title><title>Computational & applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>This article contributes a numerical technique for a class of singularly perturbed time delayed parabolic partial differential equation. A priori results of maximum principle, stability and bounds are discussed. The continuous problem is semi-discretized by the Crank–Nicolson based scheme in the temporal direction and then discretized by the tension spline scheme on non-uniform Shishkin mesh. Error estimation for the discretized problem is derived. To validate the theoretical findings, the numerical outcomes for linear and nonlinear problems are tested.</description><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Discretization</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Maximum principle</subject><subject>Parabolic differential equations</subject><subject>Partial differential equations</subject><subject>Time dependence</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwApwscTasf-McUcWfhMQFzpab2G2qNE5t59AH4L1JGiRunHZHmm9WOwjdUrinAMVDEsCpIMCAAGWFJvIMLaiGggAHdo4WjHFNuAJ-ia5S2gHwggqxQN-rsO-HbHMTOtvilIf6iH2I2OKqtSnh4HFu9o7Urndd7bqMU9NthtbG9oh7F_MQ167GvY12HdqmmrbcjFF1472LIzAJdxhOJ3DexjBstji7Lk069W3TuWt04W2b3M3vXKKv56fP1St5_3h5Wz2-k4rTMhOqmFJeFcJqR1XJtdRQas3qcm0LWVdCycIr6qmW1Jda2sqDrjQXShTey5ov0d2c28dwGFzKZheGOD6eDBMceMkkg9HFZlcVQ0rRedPHZm_j0VAwU91mrtuMdZtT3UaOEJ-hNJq7jYt_0f9QPzQMhTk</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Kumar, P. Murali Mohan</creator><creator>Ravi Kanth, A. S. V.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8472-9023</orcidid></search><sort><creationdate>20200901</creationdate><title>Computational study for a class of time-dependent singularly perturbed parabolic partial differential equation through tension spline</title><author>Kumar, P. Murali Mohan ; Ravi Kanth, A. S. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-16266f674a8e169385809882d9ba75dc4657f61f1851f985acf08c834647ff5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Discretization</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Maximum principle</topic><topic>Parabolic differential equations</topic><topic>Partial differential equations</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, P. Murali Mohan</creatorcontrib><creatorcontrib>Ravi Kanth, A. S. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Computational & applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, P. Murali Mohan</au><au>Ravi Kanth, A. S. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational study for a class of time-dependent singularly perturbed parabolic partial differential equation through tension spline</atitle><jtitle>Computational & applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>39</volume><issue>3</issue><artnum>233</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>This article contributes a numerical technique for a class of singularly perturbed time delayed parabolic partial differential equation. A priori results of maximum principle, stability and bounds are discussed. The continuous problem is semi-discretized by the Crank–Nicolson based scheme in the temporal direction and then discretized by the tension spline scheme on non-uniform Shishkin mesh. Error estimation for the discretized problem is derived. To validate the theoretical findings, the numerical outcomes for linear and nonlinear problems are tested.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-020-01278-5</doi><orcidid>https://orcid.org/0000-0001-8472-9023</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2238-3603 |
ispartof | Computational & applied mathematics, 2020-09, Vol.39 (3), Article 233 |
issn | 2238-3603 1807-0302 |
language | eng |
recordid | cdi_proquest_journals_2430392520 |
source | Springer Nature |
subjects | Applications of Mathematics Applied physics Computational mathematics Computational Mathematics and Numerical Analysis Discretization Mathematical Applications in Computer Science Mathematical Applications in the Physical Sciences Mathematics Mathematics and Statistics Maximum principle Parabolic differential equations Partial differential equations Time dependence |
title | Computational study for a class of time-dependent singularly perturbed parabolic partial differential equation through tension spline |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A15%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20study%20for%20a%20class%20of%20time-dependent%20singularly%20perturbed%20parabolic%20partial%20differential%20equation%20through%20tension%20spline&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Kumar,%20P.%20Murali%20Mohan&rft.date=2020-09-01&rft.volume=39&rft.issue=3&rft.artnum=233&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-020-01278-5&rft_dat=%3Cproquest_cross%3E2430392520%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-16266f674a8e169385809882d9ba75dc4657f61f1851f985acf08c834647ff5d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2430392520&rft_id=info:pmid/&rfr_iscdi=true |