Loading…

Computational study for a class of time-dependent singularly perturbed parabolic partial differential equation through tension spline

This article contributes a numerical technique for a class of singularly perturbed time delayed parabolic partial differential equation. A priori results of maximum principle, stability and bounds are discussed. The continuous problem is semi-discretized by the Crank–Nicolson based scheme in the tem...

Full description

Saved in:
Bibliographic Details
Published in:Computational & applied mathematics 2020-09, Vol.39 (3), Article 233
Main Authors: Kumar, P. Murali Mohan, Ravi Kanth, A. S. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-16266f674a8e169385809882d9ba75dc4657f61f1851f985acf08c834647ff5d3
cites cdi_FETCH-LOGICAL-c319t-16266f674a8e169385809882d9ba75dc4657f61f1851f985acf08c834647ff5d3
container_end_page
container_issue 3
container_start_page
container_title Computational & applied mathematics
container_volume 39
creator Kumar, P. Murali Mohan
Ravi Kanth, A. S. V.
description This article contributes a numerical technique for a class of singularly perturbed time delayed parabolic partial differential equation. A priori results of maximum principle, stability and bounds are discussed. The continuous problem is semi-discretized by the Crank–Nicolson based scheme in the temporal direction and then discretized by the tension spline scheme on non-uniform Shishkin mesh. Error estimation for the discretized problem is derived. To validate the theoretical findings, the numerical outcomes for linear and nonlinear problems are tested.
doi_str_mv 10.1007/s40314-020-01278-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2430392520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430392520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-16266f674a8e169385809882d9ba75dc4657f61f1851f985acf08c834647ff5d3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwApwscTasf-McUcWfhMQFzpab2G2qNE5t59AH4L1JGiRunHZHmm9WOwjdUrinAMVDEsCpIMCAAGWFJvIMLaiGggAHdo4WjHFNuAJ-ia5S2gHwggqxQN-rsO-HbHMTOtvilIf6iH2I2OKqtSnh4HFu9o7Urndd7bqMU9NthtbG9oh7F_MQ167GvY12HdqmmrbcjFF1472LIzAJdxhOJ3DexjBstji7Lk069W3TuWt04W2b3M3vXKKv56fP1St5_3h5Wz2-k4rTMhOqmFJeFcJqR1XJtdRQas3qcm0LWVdCycIr6qmW1Jda2sqDrjQXShTey5ov0d2c28dwGFzKZheGOD6eDBMceMkkg9HFZlcVQ0rRedPHZm_j0VAwU91mrtuMdZtT3UaOEJ-hNJq7jYt_0f9QPzQMhTk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430392520</pqid></control><display><type>article</type><title>Computational study for a class of time-dependent singularly perturbed parabolic partial differential equation through tension spline</title><source>Springer Nature</source><creator>Kumar, P. Murali Mohan ; Ravi Kanth, A. S. V.</creator><creatorcontrib>Kumar, P. Murali Mohan ; Ravi Kanth, A. S. V.</creatorcontrib><description>This article contributes a numerical technique for a class of singularly perturbed time delayed parabolic partial differential equation. A priori results of maximum principle, stability and bounds are discussed. The continuous problem is semi-discretized by the Crank–Nicolson based scheme in the temporal direction and then discretized by the tension spline scheme on non-uniform Shishkin mesh. Error estimation for the discretized problem is derived. To validate the theoretical findings, the numerical outcomes for linear and nonlinear problems are tested.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-020-01278-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Applied physics ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Discretization ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Maximum principle ; Parabolic differential equations ; Partial differential equations ; Time dependence</subject><ispartof>Computational &amp; applied mathematics, 2020-09, Vol.39 (3), Article 233</ispartof><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2020</rights><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-16266f674a8e169385809882d9ba75dc4657f61f1851f985acf08c834647ff5d3</citedby><cites>FETCH-LOGICAL-c319t-16266f674a8e169385809882d9ba75dc4657f61f1851f985acf08c834647ff5d3</cites><orcidid>0000-0001-8472-9023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kumar, P. Murali Mohan</creatorcontrib><creatorcontrib>Ravi Kanth, A. S. V.</creatorcontrib><title>Computational study for a class of time-dependent singularly perturbed parabolic partial differential equation through tension spline</title><title>Computational &amp; applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>This article contributes a numerical technique for a class of singularly perturbed time delayed parabolic partial differential equation. A priori results of maximum principle, stability and bounds are discussed. The continuous problem is semi-discretized by the Crank–Nicolson based scheme in the temporal direction and then discretized by the tension spline scheme on non-uniform Shishkin mesh. Error estimation for the discretized problem is derived. To validate the theoretical findings, the numerical outcomes for linear and nonlinear problems are tested.</description><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Discretization</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Maximum principle</subject><subject>Parabolic differential equations</subject><subject>Partial differential equations</subject><subject>Time dependence</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwApwscTasf-McUcWfhMQFzpab2G2qNE5t59AH4L1JGiRunHZHmm9WOwjdUrinAMVDEsCpIMCAAGWFJvIMLaiGggAHdo4WjHFNuAJ-ia5S2gHwggqxQN-rsO-HbHMTOtvilIf6iH2I2OKqtSnh4HFu9o7Urndd7bqMU9NthtbG9oh7F_MQ167GvY12HdqmmrbcjFF1472LIzAJdxhOJ3DexjBstji7Lk069W3TuWt04W2b3M3vXKKv56fP1St5_3h5Wz2-k4rTMhOqmFJeFcJqR1XJtdRQas3qcm0LWVdCycIr6qmW1Jda2sqDrjQXShTey5ov0d2c28dwGFzKZheGOD6eDBMceMkkg9HFZlcVQ0rRedPHZm_j0VAwU91mrtuMdZtT3UaOEJ-hNJq7jYt_0f9QPzQMhTk</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Kumar, P. Murali Mohan</creator><creator>Ravi Kanth, A. S. V.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8472-9023</orcidid></search><sort><creationdate>20200901</creationdate><title>Computational study for a class of time-dependent singularly perturbed parabolic partial differential equation through tension spline</title><author>Kumar, P. Murali Mohan ; Ravi Kanth, A. S. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-16266f674a8e169385809882d9ba75dc4657f61f1851f985acf08c834647ff5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Discretization</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Maximum principle</topic><topic>Parabolic differential equations</topic><topic>Partial differential equations</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, P. Murali Mohan</creatorcontrib><creatorcontrib>Ravi Kanth, A. S. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Computational &amp; applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, P. Murali Mohan</au><au>Ravi Kanth, A. S. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational study for a class of time-dependent singularly perturbed parabolic partial differential equation through tension spline</atitle><jtitle>Computational &amp; applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>39</volume><issue>3</issue><artnum>233</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>This article contributes a numerical technique for a class of singularly perturbed time delayed parabolic partial differential equation. A priori results of maximum principle, stability and bounds are discussed. The continuous problem is semi-discretized by the Crank–Nicolson based scheme in the temporal direction and then discretized by the tension spline scheme on non-uniform Shishkin mesh. Error estimation for the discretized problem is derived. To validate the theoretical findings, the numerical outcomes for linear and nonlinear problems are tested.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-020-01278-5</doi><orcidid>https://orcid.org/0000-0001-8472-9023</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2238-3603
ispartof Computational & applied mathematics, 2020-09, Vol.39 (3), Article 233
issn 2238-3603
1807-0302
language eng
recordid cdi_proquest_journals_2430392520
source Springer Nature
subjects Applications of Mathematics
Applied physics
Computational mathematics
Computational Mathematics and Numerical Analysis
Discretization
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematics
Mathematics and Statistics
Maximum principle
Parabolic differential equations
Partial differential equations
Time dependence
title Computational study for a class of time-dependent singularly perturbed parabolic partial differential equation through tension spline
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A15%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20study%20for%20a%20class%20of%20time-dependent%20singularly%20perturbed%20parabolic%20partial%20differential%20equation%20through%20tension%20spline&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Kumar,%20P.%20Murali%20Mohan&rft.date=2020-09-01&rft.volume=39&rft.issue=3&rft.artnum=233&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-020-01278-5&rft_dat=%3Cproquest_cross%3E2430392520%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-16266f674a8e169385809882d9ba75dc4657f61f1851f985acf08c834647ff5d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2430392520&rft_id=info:pmid/&rfr_iscdi=true