Loading…
Complete \(L_\infty\)-algebras and their homotopy theory
We analyze a model for the homotopy theory of complete filtered \(L_\infty\)-algebras intended for applications in algebraic and algebro-geometric deformation theory. We provide an explicit proof of an unpublished result of E.\ Getzler which states that the category \(\hat{\mathsf{Lie}}_\infty\) of...
Saved in:
Published in: | arXiv.org 2023-05 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Rogers, Christopher L |
description | We analyze a model for the homotopy theory of complete filtered \(L_\infty\)-algebras intended for applications in algebraic and algebro-geometric deformation theory. We provide an explicit proof of an unpublished result of E.\ Getzler which states that the category \(\hat{\mathsf{Lie}}_\infty\) of such \(L_\infty\)-algebras and filtration-preserving \(\infty\)-morphisms admits the structure of a category of fibrant objects (CFO) for a homotopy theory. Novel applications of our approach include explicit models for homotopy pullbacks, and an analog of Whitehead's Theorem: under some mild conditions, every filtered \(L_\infty\)-quasi-isomorphism in \(\hat{\mathsf{Lie}}_\infty\) has a filtration preserving homotopy inverse. Also, we show that the simplicial Maurer--Cartan functor, which assigns a Kan simplicial set to each \(L_\infty\)-algebra in \(\hat{\mathsf{Lie}}_\infty\), is an exact functor between the respective CFOs. Finally, we provide an obstruction theory for the general problem of lifting a Maurer-Cartan element through an \(\infty\)-morphism. The obstruction classes reside in the associated graded mapping cone of the corresponding tangent map. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2430536759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430536759</sourcerecordid><originalsourceid>FETCH-proquest_journals_24305367593</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcM7PLchJLUlViNHwiY_JzEsrqYzR1E3MSU9NKkosVkjMS1EoyUjNLFLIyM_NL8kvqARx84sqeRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3sjE2MDU2Mzc1NKYOFUALLs1_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430536759</pqid></control><display><type>article</type><title>Complete \(L_\infty\)-algebras and their homotopy theory</title><source>Publicly Available Content Database</source><creator>Rogers, Christopher L</creator><creatorcontrib>Rogers, Christopher L</creatorcontrib><description>We analyze a model for the homotopy theory of complete filtered \(L_\infty\)-algebras intended for applications in algebraic and algebro-geometric deformation theory. We provide an explicit proof of an unpublished result of E.\ Getzler which states that the category \(\hat{\mathsf{Lie}}_\infty\) of such \(L_\infty\)-algebras and filtration-preserving \(\infty\)-morphisms admits the structure of a category of fibrant objects (CFO) for a homotopy theory. Novel applications of our approach include explicit models for homotopy pullbacks, and an analog of Whitehead's Theorem: under some mild conditions, every filtered \(L_\infty\)-quasi-isomorphism in \(\hat{\mathsf{Lie}}_\infty\) has a filtration preserving homotopy inverse. Also, we show that the simplicial Maurer--Cartan functor, which assigns a Kan simplicial set to each \(L_\infty\)-algebra in \(\hat{\mathsf{Lie}}_\infty\), is an exact functor between the respective CFOs. Finally, we provide an obstruction theory for the general problem of lifting a Maurer-Cartan element through an \(\infty\)-morphism. The obstruction classes reside in the associated graded mapping cone of the corresponding tangent map.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Deformation ; Filtration ; Homotopy theory ; Isomorphism ; Uniqueness theorems</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2430536759?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Rogers, Christopher L</creatorcontrib><title>Complete \(L_\infty\)-algebras and their homotopy theory</title><title>arXiv.org</title><description>We analyze a model for the homotopy theory of complete filtered \(L_\infty\)-algebras intended for applications in algebraic and algebro-geometric deformation theory. We provide an explicit proof of an unpublished result of E.\ Getzler which states that the category \(\hat{\mathsf{Lie}}_\infty\) of such \(L_\infty\)-algebras and filtration-preserving \(\infty\)-morphisms admits the structure of a category of fibrant objects (CFO) for a homotopy theory. Novel applications of our approach include explicit models for homotopy pullbacks, and an analog of Whitehead's Theorem: under some mild conditions, every filtered \(L_\infty\)-quasi-isomorphism in \(\hat{\mathsf{Lie}}_\infty\) has a filtration preserving homotopy inverse. Also, we show that the simplicial Maurer--Cartan functor, which assigns a Kan simplicial set to each \(L_\infty\)-algebra in \(\hat{\mathsf{Lie}}_\infty\), is an exact functor between the respective CFOs. Finally, we provide an obstruction theory for the general problem of lifting a Maurer-Cartan element through an \(\infty\)-morphism. The obstruction classes reside in the associated graded mapping cone of the corresponding tangent map.</description><subject>Algebra</subject><subject>Deformation</subject><subject>Filtration</subject><subject>Homotopy theory</subject><subject>Isomorphism</subject><subject>Uniqueness theorems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcM7PLchJLUlViNHwiY_JzEsrqYzR1E3MSU9NKkosVkjMS1EoyUjNLFLIyM_NL8kvqARx84sqeRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3sjE2MDU2Mzc1NKYOFUALLs1_w</recordid><startdate>20230512</startdate><enddate>20230512</enddate><creator>Rogers, Christopher L</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230512</creationdate><title>Complete \(L_\infty\)-algebras and their homotopy theory</title><author>Rogers, Christopher L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24305367593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Deformation</topic><topic>Filtration</topic><topic>Homotopy theory</topic><topic>Isomorphism</topic><topic>Uniqueness theorems</topic><toplevel>online_resources</toplevel><creatorcontrib>Rogers, Christopher L</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rogers, Christopher L</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Complete \(L_\infty\)-algebras and their homotopy theory</atitle><jtitle>arXiv.org</jtitle><date>2023-05-12</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We analyze a model for the homotopy theory of complete filtered \(L_\infty\)-algebras intended for applications in algebraic and algebro-geometric deformation theory. We provide an explicit proof of an unpublished result of E.\ Getzler which states that the category \(\hat{\mathsf{Lie}}_\infty\) of such \(L_\infty\)-algebras and filtration-preserving \(\infty\)-morphisms admits the structure of a category of fibrant objects (CFO) for a homotopy theory. Novel applications of our approach include explicit models for homotopy pullbacks, and an analog of Whitehead's Theorem: under some mild conditions, every filtered \(L_\infty\)-quasi-isomorphism in \(\hat{\mathsf{Lie}}_\infty\) has a filtration preserving homotopy inverse. Also, we show that the simplicial Maurer--Cartan functor, which assigns a Kan simplicial set to each \(L_\infty\)-algebra in \(\hat{\mathsf{Lie}}_\infty\), is an exact functor between the respective CFOs. Finally, we provide an obstruction theory for the general problem of lifting a Maurer-Cartan element through an \(\infty\)-morphism. The obstruction classes reside in the associated graded mapping cone of the corresponding tangent map.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2430536759 |
source | Publicly Available Content Database |
subjects | Algebra Deformation Filtration Homotopy theory Isomorphism Uniqueness theorems |
title | Complete \(L_\infty\)-algebras and their homotopy theory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A51%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Complete%20%5C(L_%5Cinfty%5C)-algebras%20and%20their%20homotopy%20theory&rft.jtitle=arXiv.org&rft.au=Rogers,%20Christopher%20L&rft.date=2023-05-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2430536759%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24305367593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2430536759&rft_id=info:pmid/&rfr_iscdi=true |