Loading…

The effects of textile reinforcements on the protective properties of self-healing polymers intended for safety gloves

In the environment where glove material is exposed to harmful chemicals, hazards related to faster penetration of dangerous substances into the glove interior may cause microdamage. One of the solutions to overcome this problem is to use the self-healing polymeric materials that can minimize economi...

Full description

Saved in:
Bibliographic Details
Published in:Textile research journal 2020-09, Vol.90 (17-18), p.1974-1986
Main Authors: Irzmańska, Emilia, Bacciarelli-Ulacha, Anna, Adamus-Włodarczyk, Agnieszka, Strąkowska, Anna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the environment where glove material is exposed to harmful chemicals, hazards related to faster penetration of dangerous substances into the glove interior may cause microdamage. One of the solutions to overcome this problem is to use the self-healing polymeric materials that can minimize economic loss and accidents in the workplace. The current work aims to present the impact of different types of textile reinforcement on the effectiveness and efficiency of the self-healing process of methyl vinyl silicone rubber containing hybrid molecules with an inorganic silsesquioxane intended for use on all-rubber gloves. Three knitted fabrics with a similar structure and differentiated raw material composition were selected: polyamide, cotton–polyamide, and cotton. Evaluation of the self-healing process of the elastomeric composite to personal protective equipment was performed. For this purpose the assessment of the surface morphology of materials has been performed before and after the self-healing process. The implementation of knitted fabric into the polymeric composite in the tested samples allowed us to obtain the best results in all tests. The studied composite samples exhibited an increased resistance to three types of damage: penetration, abrasion and puncture. The samples also underwent the self-healing processes and regeneration after a proper conditioning period. Thus, the obtained results confirmed the possibility of using tested elastomeric composites in the construction of protective gloves and showed an effectivity of the self-healing process for the long-term usage of that protective equipment.
ISSN:0040-5175
1746-7748
DOI:10.1177/0040517520904374