Loading…
The effects of textile reinforcements on the protective properties of self-healing polymers intended for safety gloves
In the environment where glove material is exposed to harmful chemicals, hazards related to faster penetration of dangerous substances into the glove interior may cause microdamage. One of the solutions to overcome this problem is to use the self-healing polymeric materials that can minimize economi...
Saved in:
Published in: | Textile research journal 2020-09, Vol.90 (17-18), p.1974-1986 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the environment where glove material is exposed to harmful chemicals, hazards related to faster penetration of dangerous substances into the glove interior may cause microdamage. One of the solutions to overcome this problem is to use the self-healing polymeric materials that can minimize economic loss and accidents in the workplace.
The current work aims to present the impact of different types of textile reinforcement on the effectiveness and efficiency of the self-healing process of methyl vinyl silicone rubber containing hybrid molecules with an inorganic silsesquioxane intended for use on all-rubber gloves. Three knitted fabrics with a similar structure and differentiated raw material composition were selected: polyamide, cotton–polyamide, and cotton.
Evaluation of the self-healing process of the elastomeric composite to personal protective equipment was performed. For this purpose the assessment of the surface morphology of materials has been performed before and after the self-healing process.
The implementation of knitted fabric into the polymeric composite in the tested samples allowed us to obtain the best results in all tests. The studied composite samples exhibited an increased resistance to three types of damage: penetration, abrasion and puncture. The samples also underwent the self-healing processes and regeneration after a proper conditioning period. Thus, the obtained results confirmed the possibility of using tested elastomeric composites in the construction of protective gloves and showed an effectivity of the self-healing process for the long-term usage of that protective equipment. |
---|---|
ISSN: | 0040-5175 1746-7748 |
DOI: | 10.1177/0040517520904374 |