Loading…

Water Cycle Algorithm for Modelling of Fermentation Processes

The water cycle algorithm (WCA), which is a metaheuristic method inspired by the movements of rivers and streams towards the sea in nature, has been adapted and applied here for the first time for solving such a challenging problem as the parameter identification of fermentation process (FP) models....

Full description

Saved in:
Bibliographic Details
Published in:Processes 2020-08, Vol.8 (8), p.920
Main Authors: Roeva, Olympia, Angelova, Maria, Zoteva, Dafina, Pencheva, Tania
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c292t-60f868f7e39a348316c48304908e807136ad0589e3b59eaafbc4b39514f0a3b33
cites cdi_FETCH-LOGICAL-c292t-60f868f7e39a348316c48304908e807136ad0589e3b59eaafbc4b39514f0a3b33
container_end_page
container_issue 8
container_start_page 920
container_title Processes
container_volume 8
creator Roeva, Olympia
Angelova, Maria
Zoteva, Dafina
Pencheva, Tania
description The water cycle algorithm (WCA), which is a metaheuristic method inspired by the movements of rivers and streams towards the sea in nature, has been adapted and applied here for the first time for solving such a challenging problem as the parameter identification of fermentation process (FP) models. Bacteria and yeast are chosen as representatives of FP models that are subjected to parameter identification due to their impact in different industrial fields. In addition, WCA is considered in comparison with the genetic algorithm (GA), which is another population-based technique that has been proved to be a promising alternative of conventional optimisation methods. The obtained results have been thoroughly analysed in order to outline the advantages and disadvantages of each algorithm when solving such a complicated real-world task. A discussion and a comparative analysis of both metaheuristic algorithms reveal the impact of WCA on model identification problems and show that the newly applied WCA outperforms GA with regard to the model accuracy.
doi_str_mv 10.3390/pr8080920
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2430986731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430986731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-60f868f7e39a348316c48304908e807136ad0589e3b59eaafbc4b39514f0a3b33</originalsourceid><addsrcrecordid>eNpNUD1PwzAUtBBIVKUD_8ASE0Pg2S8f9sBQRRSQimAAMUZO-lxSJXGw3aH_nqAixA13N5zupGPsUsANoobb0StQoCWcsJmUskh0IYrTf_6cLULYwQQtUGX5jN19mEiel4emI77sts638bPn1nn-7DbUde2w5c7yFfmehmhi6wb-6l1DIVC4YGfWdIEWvzpn76v7t_IxWb88PJXLddJILWOSg1W5sgWhNpgqFHkzMaQaFCkoBOZmA5nShHWmyRhbN2mNOhOpBYM14pxdHXtH7772FGK1c3s_TJOVTBG0ygsUU-r6mGq8C8GTrUbf9sYfKgHVz0HV30H4DcgoVjY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430986731</pqid></control><display><type>article</type><title>Water Cycle Algorithm for Modelling of Fermentation Processes</title><source>Publicly Available Content Database</source><creator>Roeva, Olympia ; Angelova, Maria ; Zoteva, Dafina ; Pencheva, Tania</creator><creatorcontrib>Roeva, Olympia ; Angelova, Maria ; Zoteva, Dafina ; Pencheva, Tania</creatorcontrib><description>The water cycle algorithm (WCA), which is a metaheuristic method inspired by the movements of rivers and streams towards the sea in nature, has been adapted and applied here for the first time for solving such a challenging problem as the parameter identification of fermentation process (FP) models. Bacteria and yeast are chosen as representatives of FP models that are subjected to parameter identification due to their impact in different industrial fields. In addition, WCA is considered in comparison with the genetic algorithm (GA), which is another population-based technique that has been proved to be a promising alternative of conventional optimisation methods. The obtained results have been thoroughly analysed in order to outline the advantages and disadvantages of each algorithm when solving such a complicated real-world task. A discussion and a comparative analysis of both metaheuristic algorithms reveal the impact of WCA on model identification problems and show that the newly applied WCA outperforms GA with regard to the model accuracy.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr8080920</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Automation ; Bacteria ; Biomass ; Comparative analysis ; Creeks &amp; streams ; E coli ; Enzymes ; Ethanol ; Fermentation ; Genetic algorithms ; Glucose ; Heuristic methods ; Hydrologic cycle ; Hydrology ; Mathematical models ; Microorganisms ; Model accuracy ; Nature ; Optimization ; Parameter identification ; Process parameters ; Researchers</subject><ispartof>Processes, 2020-08, Vol.8 (8), p.920</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-60f868f7e39a348316c48304908e807136ad0589e3b59eaafbc4b39514f0a3b33</citedby><cites>FETCH-LOGICAL-c292t-60f868f7e39a348316c48304908e807136ad0589e3b59eaafbc4b39514f0a3b33</cites><orcidid>0000-0003-3848-5181 ; 0000-0002-1439-8895 ; 0000-0001-7339-4686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2430986731/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2430986731?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Roeva, Olympia</creatorcontrib><creatorcontrib>Angelova, Maria</creatorcontrib><creatorcontrib>Zoteva, Dafina</creatorcontrib><creatorcontrib>Pencheva, Tania</creatorcontrib><title>Water Cycle Algorithm for Modelling of Fermentation Processes</title><title>Processes</title><description>The water cycle algorithm (WCA), which is a metaheuristic method inspired by the movements of rivers and streams towards the sea in nature, has been adapted and applied here for the first time for solving such a challenging problem as the parameter identification of fermentation process (FP) models. Bacteria and yeast are chosen as representatives of FP models that are subjected to parameter identification due to their impact in different industrial fields. In addition, WCA is considered in comparison with the genetic algorithm (GA), which is another population-based technique that has been proved to be a promising alternative of conventional optimisation methods. The obtained results have been thoroughly analysed in order to outline the advantages and disadvantages of each algorithm when solving such a complicated real-world task. A discussion and a comparative analysis of both metaheuristic algorithms reveal the impact of WCA on model identification problems and show that the newly applied WCA outperforms GA with regard to the model accuracy.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Bacteria</subject><subject>Biomass</subject><subject>Comparative analysis</subject><subject>Creeks &amp; streams</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Ethanol</subject><subject>Fermentation</subject><subject>Genetic algorithms</subject><subject>Glucose</subject><subject>Heuristic methods</subject><subject>Hydrologic cycle</subject><subject>Hydrology</subject><subject>Mathematical models</subject><subject>Microorganisms</subject><subject>Model accuracy</subject><subject>Nature</subject><subject>Optimization</subject><subject>Parameter identification</subject><subject>Process parameters</subject><subject>Researchers</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNUD1PwzAUtBBIVKUD_8ASE0Pg2S8f9sBQRRSQimAAMUZO-lxSJXGw3aH_nqAixA13N5zupGPsUsANoobb0StQoCWcsJmUskh0IYrTf_6cLULYwQQtUGX5jN19mEiel4emI77sts638bPn1nn-7DbUde2w5c7yFfmehmhi6wb-6l1DIVC4YGfWdIEWvzpn76v7t_IxWb88PJXLddJILWOSg1W5sgWhNpgqFHkzMaQaFCkoBOZmA5nShHWmyRhbN2mNOhOpBYM14pxdHXtH7772FGK1c3s_TJOVTBG0ygsUU-r6mGq8C8GTrUbf9sYfKgHVz0HV30H4DcgoVjY</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Roeva, Olympia</creator><creator>Angelova, Maria</creator><creator>Zoteva, Dafina</creator><creator>Pencheva, Tania</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-3848-5181</orcidid><orcidid>https://orcid.org/0000-0002-1439-8895</orcidid><orcidid>https://orcid.org/0000-0001-7339-4686</orcidid></search><sort><creationdate>20200801</creationdate><title>Water Cycle Algorithm for Modelling of Fermentation Processes</title><author>Roeva, Olympia ; Angelova, Maria ; Zoteva, Dafina ; Pencheva, Tania</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-60f868f7e39a348316c48304908e807136ad0589e3b59eaafbc4b39514f0a3b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Bacteria</topic><topic>Biomass</topic><topic>Comparative analysis</topic><topic>Creeks &amp; streams</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Ethanol</topic><topic>Fermentation</topic><topic>Genetic algorithms</topic><topic>Glucose</topic><topic>Heuristic methods</topic><topic>Hydrologic cycle</topic><topic>Hydrology</topic><topic>Mathematical models</topic><topic>Microorganisms</topic><topic>Model accuracy</topic><topic>Nature</topic><topic>Optimization</topic><topic>Parameter identification</topic><topic>Process parameters</topic><topic>Researchers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roeva, Olympia</creatorcontrib><creatorcontrib>Angelova, Maria</creatorcontrib><creatorcontrib>Zoteva, Dafina</creatorcontrib><creatorcontrib>Pencheva, Tania</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roeva, Olympia</au><au>Angelova, Maria</au><au>Zoteva, Dafina</au><au>Pencheva, Tania</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water Cycle Algorithm for Modelling of Fermentation Processes</atitle><jtitle>Processes</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>8</volume><issue>8</issue><spage>920</spage><pages>920-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>The water cycle algorithm (WCA), which is a metaheuristic method inspired by the movements of rivers and streams towards the sea in nature, has been adapted and applied here for the first time for solving such a challenging problem as the parameter identification of fermentation process (FP) models. Bacteria and yeast are chosen as representatives of FP models that are subjected to parameter identification due to their impact in different industrial fields. In addition, WCA is considered in comparison with the genetic algorithm (GA), which is another population-based technique that has been proved to be a promising alternative of conventional optimisation methods. The obtained results have been thoroughly analysed in order to outline the advantages and disadvantages of each algorithm when solving such a complicated real-world task. A discussion and a comparative analysis of both metaheuristic algorithms reveal the impact of WCA on model identification problems and show that the newly applied WCA outperforms GA with regard to the model accuracy.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr8080920</doi><orcidid>https://orcid.org/0000-0003-3848-5181</orcidid><orcidid>https://orcid.org/0000-0002-1439-8895</orcidid><orcidid>https://orcid.org/0000-0001-7339-4686</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9717
ispartof Processes, 2020-08, Vol.8 (8), p.920
issn 2227-9717
2227-9717
language eng
recordid cdi_proquest_journals_2430986731
source Publicly Available Content Database
subjects Algorithms
Automation
Bacteria
Biomass
Comparative analysis
Creeks & streams
E coli
Enzymes
Ethanol
Fermentation
Genetic algorithms
Glucose
Heuristic methods
Hydrologic cycle
Hydrology
Mathematical models
Microorganisms
Model accuracy
Nature
Optimization
Parameter identification
Process parameters
Researchers
title Water Cycle Algorithm for Modelling of Fermentation Processes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A08%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20Cycle%20Algorithm%20for%20Modelling%20of%20Fermentation%20Processes&rft.jtitle=Processes&rft.au=Roeva,%20Olympia&rft.date=2020-08-01&rft.volume=8&rft.issue=8&rft.spage=920&rft.pages=920-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr8080920&rft_dat=%3Cproquest_cross%3E2430986731%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-60f868f7e39a348316c48304908e807136ad0589e3b59eaafbc4b39514f0a3b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2430986731&rft_id=info:pmid/&rfr_iscdi=true