Loading…
Water Cycle Algorithm for Modelling of Fermentation Processes
The water cycle algorithm (WCA), which is a metaheuristic method inspired by the movements of rivers and streams towards the sea in nature, has been adapted and applied here for the first time for solving such a challenging problem as the parameter identification of fermentation process (FP) models....
Saved in:
Published in: | Processes 2020-08, Vol.8 (8), p.920 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c292t-60f868f7e39a348316c48304908e807136ad0589e3b59eaafbc4b39514f0a3b33 |
---|---|
cites | cdi_FETCH-LOGICAL-c292t-60f868f7e39a348316c48304908e807136ad0589e3b59eaafbc4b39514f0a3b33 |
container_end_page | |
container_issue | 8 |
container_start_page | 920 |
container_title | Processes |
container_volume | 8 |
creator | Roeva, Olympia Angelova, Maria Zoteva, Dafina Pencheva, Tania |
description | The water cycle algorithm (WCA), which is a metaheuristic method inspired by the movements of rivers and streams towards the sea in nature, has been adapted and applied here for the first time for solving such a challenging problem as the parameter identification of fermentation process (FP) models. Bacteria and yeast are chosen as representatives of FP models that are subjected to parameter identification due to their impact in different industrial fields. In addition, WCA is considered in comparison with the genetic algorithm (GA), which is another population-based technique that has been proved to be a promising alternative of conventional optimisation methods. The obtained results have been thoroughly analysed in order to outline the advantages and disadvantages of each algorithm when solving such a complicated real-world task. A discussion and a comparative analysis of both metaheuristic algorithms reveal the impact of WCA on model identification problems and show that the newly applied WCA outperforms GA with regard to the model accuracy. |
doi_str_mv | 10.3390/pr8080920 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2430986731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430986731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-60f868f7e39a348316c48304908e807136ad0589e3b59eaafbc4b39514f0a3b33</originalsourceid><addsrcrecordid>eNpNUD1PwzAUtBBIVKUD_8ASE0Pg2S8f9sBQRRSQimAAMUZO-lxSJXGw3aH_nqAixA13N5zupGPsUsANoobb0StQoCWcsJmUskh0IYrTf_6cLULYwQQtUGX5jN19mEiel4emI77sts638bPn1nn-7DbUde2w5c7yFfmehmhi6wb-6l1DIVC4YGfWdIEWvzpn76v7t_IxWb88PJXLddJILWOSg1W5sgWhNpgqFHkzMaQaFCkoBOZmA5nShHWmyRhbN2mNOhOpBYM14pxdHXtH7772FGK1c3s_TJOVTBG0ygsUU-r6mGq8C8GTrUbf9sYfKgHVz0HV30H4DcgoVjY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430986731</pqid></control><display><type>article</type><title>Water Cycle Algorithm for Modelling of Fermentation Processes</title><source>Publicly Available Content Database</source><creator>Roeva, Olympia ; Angelova, Maria ; Zoteva, Dafina ; Pencheva, Tania</creator><creatorcontrib>Roeva, Olympia ; Angelova, Maria ; Zoteva, Dafina ; Pencheva, Tania</creatorcontrib><description>The water cycle algorithm (WCA), which is a metaheuristic method inspired by the movements of rivers and streams towards the sea in nature, has been adapted and applied here for the first time for solving such a challenging problem as the parameter identification of fermentation process (FP) models. Bacteria and yeast are chosen as representatives of FP models that are subjected to parameter identification due to their impact in different industrial fields. In addition, WCA is considered in comparison with the genetic algorithm (GA), which is another population-based technique that has been proved to be a promising alternative of conventional optimisation methods. The obtained results have been thoroughly analysed in order to outline the advantages and disadvantages of each algorithm when solving such a complicated real-world task. A discussion and a comparative analysis of both metaheuristic algorithms reveal the impact of WCA on model identification problems and show that the newly applied WCA outperforms GA with regard to the model accuracy.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr8080920</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Automation ; Bacteria ; Biomass ; Comparative analysis ; Creeks & streams ; E coli ; Enzymes ; Ethanol ; Fermentation ; Genetic algorithms ; Glucose ; Heuristic methods ; Hydrologic cycle ; Hydrology ; Mathematical models ; Microorganisms ; Model accuracy ; Nature ; Optimization ; Parameter identification ; Process parameters ; Researchers</subject><ispartof>Processes, 2020-08, Vol.8 (8), p.920</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-60f868f7e39a348316c48304908e807136ad0589e3b59eaafbc4b39514f0a3b33</citedby><cites>FETCH-LOGICAL-c292t-60f868f7e39a348316c48304908e807136ad0589e3b59eaafbc4b39514f0a3b33</cites><orcidid>0000-0003-3848-5181 ; 0000-0002-1439-8895 ; 0000-0001-7339-4686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2430986731/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2430986731?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Roeva, Olympia</creatorcontrib><creatorcontrib>Angelova, Maria</creatorcontrib><creatorcontrib>Zoteva, Dafina</creatorcontrib><creatorcontrib>Pencheva, Tania</creatorcontrib><title>Water Cycle Algorithm for Modelling of Fermentation Processes</title><title>Processes</title><description>The water cycle algorithm (WCA), which is a metaheuristic method inspired by the movements of rivers and streams towards the sea in nature, has been adapted and applied here for the first time for solving such a challenging problem as the parameter identification of fermentation process (FP) models. Bacteria and yeast are chosen as representatives of FP models that are subjected to parameter identification due to their impact in different industrial fields. In addition, WCA is considered in comparison with the genetic algorithm (GA), which is another population-based technique that has been proved to be a promising alternative of conventional optimisation methods. The obtained results have been thoroughly analysed in order to outline the advantages and disadvantages of each algorithm when solving such a complicated real-world task. A discussion and a comparative analysis of both metaheuristic algorithms reveal the impact of WCA on model identification problems and show that the newly applied WCA outperforms GA with regard to the model accuracy.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Bacteria</subject><subject>Biomass</subject><subject>Comparative analysis</subject><subject>Creeks & streams</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Ethanol</subject><subject>Fermentation</subject><subject>Genetic algorithms</subject><subject>Glucose</subject><subject>Heuristic methods</subject><subject>Hydrologic cycle</subject><subject>Hydrology</subject><subject>Mathematical models</subject><subject>Microorganisms</subject><subject>Model accuracy</subject><subject>Nature</subject><subject>Optimization</subject><subject>Parameter identification</subject><subject>Process parameters</subject><subject>Researchers</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNUD1PwzAUtBBIVKUD_8ASE0Pg2S8f9sBQRRSQimAAMUZO-lxSJXGw3aH_nqAixA13N5zupGPsUsANoobb0StQoCWcsJmUskh0IYrTf_6cLULYwQQtUGX5jN19mEiel4emI77sts638bPn1nn-7DbUde2w5c7yFfmehmhi6wb-6l1DIVC4YGfWdIEWvzpn76v7t_IxWb88PJXLddJILWOSg1W5sgWhNpgqFHkzMaQaFCkoBOZmA5nShHWmyRhbN2mNOhOpBYM14pxdHXtH7772FGK1c3s_TJOVTBG0ygsUU-r6mGq8C8GTrUbf9sYfKgHVz0HV30H4DcgoVjY</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Roeva, Olympia</creator><creator>Angelova, Maria</creator><creator>Zoteva, Dafina</creator><creator>Pencheva, Tania</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-3848-5181</orcidid><orcidid>https://orcid.org/0000-0002-1439-8895</orcidid><orcidid>https://orcid.org/0000-0001-7339-4686</orcidid></search><sort><creationdate>20200801</creationdate><title>Water Cycle Algorithm for Modelling of Fermentation Processes</title><author>Roeva, Olympia ; Angelova, Maria ; Zoteva, Dafina ; Pencheva, Tania</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-60f868f7e39a348316c48304908e807136ad0589e3b59eaafbc4b39514f0a3b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Bacteria</topic><topic>Biomass</topic><topic>Comparative analysis</topic><topic>Creeks & streams</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Ethanol</topic><topic>Fermentation</topic><topic>Genetic algorithms</topic><topic>Glucose</topic><topic>Heuristic methods</topic><topic>Hydrologic cycle</topic><topic>Hydrology</topic><topic>Mathematical models</topic><topic>Microorganisms</topic><topic>Model accuracy</topic><topic>Nature</topic><topic>Optimization</topic><topic>Parameter identification</topic><topic>Process parameters</topic><topic>Researchers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roeva, Olympia</creatorcontrib><creatorcontrib>Angelova, Maria</creatorcontrib><creatorcontrib>Zoteva, Dafina</creatorcontrib><creatorcontrib>Pencheva, Tania</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roeva, Olympia</au><au>Angelova, Maria</au><au>Zoteva, Dafina</au><au>Pencheva, Tania</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water Cycle Algorithm for Modelling of Fermentation Processes</atitle><jtitle>Processes</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>8</volume><issue>8</issue><spage>920</spage><pages>920-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>The water cycle algorithm (WCA), which is a metaheuristic method inspired by the movements of rivers and streams towards the sea in nature, has been adapted and applied here for the first time for solving such a challenging problem as the parameter identification of fermentation process (FP) models. Bacteria and yeast are chosen as representatives of FP models that are subjected to parameter identification due to their impact in different industrial fields. In addition, WCA is considered in comparison with the genetic algorithm (GA), which is another population-based technique that has been proved to be a promising alternative of conventional optimisation methods. The obtained results have been thoroughly analysed in order to outline the advantages and disadvantages of each algorithm when solving such a complicated real-world task. A discussion and a comparative analysis of both metaheuristic algorithms reveal the impact of WCA on model identification problems and show that the newly applied WCA outperforms GA with regard to the model accuracy.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr8080920</doi><orcidid>https://orcid.org/0000-0003-3848-5181</orcidid><orcidid>https://orcid.org/0000-0002-1439-8895</orcidid><orcidid>https://orcid.org/0000-0001-7339-4686</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2020-08, Vol.8 (8), p.920 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_2430986731 |
source | Publicly Available Content Database |
subjects | Algorithms Automation Bacteria Biomass Comparative analysis Creeks & streams E coli Enzymes Ethanol Fermentation Genetic algorithms Glucose Heuristic methods Hydrologic cycle Hydrology Mathematical models Microorganisms Model accuracy Nature Optimization Parameter identification Process parameters Researchers |
title | Water Cycle Algorithm for Modelling of Fermentation Processes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A08%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20Cycle%20Algorithm%20for%20Modelling%20of%20Fermentation%20Processes&rft.jtitle=Processes&rft.au=Roeva,%20Olympia&rft.date=2020-08-01&rft.volume=8&rft.issue=8&rft.spage=920&rft.pages=920-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr8080920&rft_dat=%3Cproquest_cross%3E2430986731%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-60f868f7e39a348316c48304908e807136ad0589e3b59eaafbc4b39514f0a3b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2430986731&rft_id=info:pmid/&rfr_iscdi=true |