Loading…
Competitive Allocation of a Mixed Manna
We study the fair division problem of allocating a mixed manna under additively separable piecewise linear concave (SPLC) utilities. A mixed manna contains goods that everyone likes and bads that everyone dislikes, as well as items that some like and others dislike. The seminal work of Bogomolnaia e...
Saved in:
Published in: | arXiv.org 2020-08 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Chaudhury, Bhaskar Ray Garg, Jugal McGlaughlin, Peter Mehta, Ruta |
description | We study the fair division problem of allocating a mixed manna under additively separable piecewise linear concave (SPLC) utilities. A mixed manna contains goods that everyone likes and bads that everyone dislikes, as well as items that some like and others dislike. The seminal work of Bogomolnaia et al. [Econometrica'17] argue why allocating a mixed manna is genuinely more complicated than a good or a bad manna, and why competitive equilibrium is the best mechanism. They also provide the existence of equilibrium and establish its peculiar properties (e.g., non-convex and disconnected set of equilibria even under linear utilities), but leave the problem of computing an equilibrium open. This problem remained unresolved even for only bad manna under linear utilities. Our main result is a simplex-like algorithm based on Lemke's scheme for computing a competitive allocation of a mixed manna under SPLC utilities, a strict generalization of linear. Experimental results on randomly generated instances suggest that our algorithm will be fast in practice. The problem is known to be PPAD-hard for the case of good manna, and we also show a similar result for the case of bad manna. Given these PPAD-hardness results, designing such an algorithm is the only non-brute-force (non-enumerative) option known, e.g., the classic Lemke-Howson algorithm (1964) for computing a Nash equilibrium in a 2-player game is still one of the most widely used algorithms in practice. Our algorithm also yields several new structural properties as simple corollaries. We obtain a (constructive) proof of existence for a far more general setting, membership of the problem in PPAD, rational-valued solution, and odd number of solutions property. The last property also settles the conjecture of Bogomolnaia et al. in the affirmative. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2431125093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2431125093</sourcerecordid><originalsourceid>FETCH-proquest_journals_24311250933</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQd87PLUgtySzJLEtVcMzJyU9OLMnMz1PIT1NIVPDNrEhNUfBNzMtL5GFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMTY0NDI1MDS2Nj4lQBAEIjLy8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431125093</pqid></control><display><type>article</type><title>Competitive Allocation of a Mixed Manna</title><source>Publicly Available Content Database</source><creator>Chaudhury, Bhaskar Ray ; Garg, Jugal ; McGlaughlin, Peter ; Mehta, Ruta</creator><creatorcontrib>Chaudhury, Bhaskar Ray ; Garg, Jugal ; McGlaughlin, Peter ; Mehta, Ruta</creatorcontrib><description>We study the fair division problem of allocating a mixed manna under additively separable piecewise linear concave (SPLC) utilities. A mixed manna contains goods that everyone likes and bads that everyone dislikes, as well as items that some like and others dislike. The seminal work of Bogomolnaia et al. [Econometrica'17] argue why allocating a mixed manna is genuinely more complicated than a good or a bad manna, and why competitive equilibrium is the best mechanism. They also provide the existence of equilibrium and establish its peculiar properties (e.g., non-convex and disconnected set of equilibria even under linear utilities), but leave the problem of computing an equilibrium open. This problem remained unresolved even for only bad manna under linear utilities. Our main result is a simplex-like algorithm based on Lemke's scheme for computing a competitive allocation of a mixed manna under SPLC utilities, a strict generalization of linear. Experimental results on randomly generated instances suggest that our algorithm will be fast in practice. The problem is known to be PPAD-hard for the case of good manna, and we also show a similar result for the case of bad manna. Given these PPAD-hardness results, designing such an algorithm is the only non-brute-force (non-enumerative) option known, e.g., the classic Lemke-Howson algorithm (1964) for computing a Nash equilibrium in a 2-player game is still one of the most widely used algorithms in practice. Our algorithm also yields several new structural properties as simple corollaries. We obtain a (constructive) proof of existence for a far more general setting, membership of the problem in PPAD, rational-valued solution, and odd number of solutions property. The last property also settles the conjecture of Bogomolnaia et al. in the affirmative.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Computation ; Game theory ; Utilities</subject><ispartof>arXiv.org, 2020-08</ispartof><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2431125093?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Chaudhury, Bhaskar Ray</creatorcontrib><creatorcontrib>Garg, Jugal</creatorcontrib><creatorcontrib>McGlaughlin, Peter</creatorcontrib><creatorcontrib>Mehta, Ruta</creatorcontrib><title>Competitive Allocation of a Mixed Manna</title><title>arXiv.org</title><description>We study the fair division problem of allocating a mixed manna under additively separable piecewise linear concave (SPLC) utilities. A mixed manna contains goods that everyone likes and bads that everyone dislikes, as well as items that some like and others dislike. The seminal work of Bogomolnaia et al. [Econometrica'17] argue why allocating a mixed manna is genuinely more complicated than a good or a bad manna, and why competitive equilibrium is the best mechanism. They also provide the existence of equilibrium and establish its peculiar properties (e.g., non-convex and disconnected set of equilibria even under linear utilities), but leave the problem of computing an equilibrium open. This problem remained unresolved even for only bad manna under linear utilities. Our main result is a simplex-like algorithm based on Lemke's scheme for computing a competitive allocation of a mixed manna under SPLC utilities, a strict generalization of linear. Experimental results on randomly generated instances suggest that our algorithm will be fast in practice. The problem is known to be PPAD-hard for the case of good manna, and we also show a similar result for the case of bad manna. Given these PPAD-hardness results, designing such an algorithm is the only non-brute-force (non-enumerative) option known, e.g., the classic Lemke-Howson algorithm (1964) for computing a Nash equilibrium in a 2-player game is still one of the most widely used algorithms in practice. Our algorithm also yields several new structural properties as simple corollaries. We obtain a (constructive) proof of existence for a far more general setting, membership of the problem in PPAD, rational-valued solution, and odd number of solutions property. The last property also settles the conjecture of Bogomolnaia et al. in the affirmative.</description><subject>Algorithms</subject><subject>Computation</subject><subject>Game theory</subject><subject>Utilities</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQd87PLUgtySzJLEtVcMzJyU9OLMnMz1PIT1NIVPDNrEhNUfBNzMtL5GFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMTY0NDI1MDS2Nj4lQBAEIjLy8</recordid><startdate>20200806</startdate><enddate>20200806</enddate><creator>Chaudhury, Bhaskar Ray</creator><creator>Garg, Jugal</creator><creator>McGlaughlin, Peter</creator><creator>Mehta, Ruta</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200806</creationdate><title>Competitive Allocation of a Mixed Manna</title><author>Chaudhury, Bhaskar Ray ; Garg, Jugal ; McGlaughlin, Peter ; Mehta, Ruta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24311250933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computation</topic><topic>Game theory</topic><topic>Utilities</topic><toplevel>online_resources</toplevel><creatorcontrib>Chaudhury, Bhaskar Ray</creatorcontrib><creatorcontrib>Garg, Jugal</creatorcontrib><creatorcontrib>McGlaughlin, Peter</creatorcontrib><creatorcontrib>Mehta, Ruta</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaudhury, Bhaskar Ray</au><au>Garg, Jugal</au><au>McGlaughlin, Peter</au><au>Mehta, Ruta</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Competitive Allocation of a Mixed Manna</atitle><jtitle>arXiv.org</jtitle><date>2020-08-06</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We study the fair division problem of allocating a mixed manna under additively separable piecewise linear concave (SPLC) utilities. A mixed manna contains goods that everyone likes and bads that everyone dislikes, as well as items that some like and others dislike. The seminal work of Bogomolnaia et al. [Econometrica'17] argue why allocating a mixed manna is genuinely more complicated than a good or a bad manna, and why competitive equilibrium is the best mechanism. They also provide the existence of equilibrium and establish its peculiar properties (e.g., non-convex and disconnected set of equilibria even under linear utilities), but leave the problem of computing an equilibrium open. This problem remained unresolved even for only bad manna under linear utilities. Our main result is a simplex-like algorithm based on Lemke's scheme for computing a competitive allocation of a mixed manna under SPLC utilities, a strict generalization of linear. Experimental results on randomly generated instances suggest that our algorithm will be fast in practice. The problem is known to be PPAD-hard for the case of good manna, and we also show a similar result for the case of bad manna. Given these PPAD-hardness results, designing such an algorithm is the only non-brute-force (non-enumerative) option known, e.g., the classic Lemke-Howson algorithm (1964) for computing a Nash equilibrium in a 2-player game is still one of the most widely used algorithms in practice. Our algorithm also yields several new structural properties as simple corollaries. We obtain a (constructive) proof of existence for a far more general setting, membership of the problem in PPAD, rational-valued solution, and odd number of solutions property. The last property also settles the conjecture of Bogomolnaia et al. in the affirmative.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2431125093 |
source | Publicly Available Content Database |
subjects | Algorithms Computation Game theory Utilities |
title | Competitive Allocation of a Mixed Manna |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A25%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Competitive%20Allocation%20of%20a%20Mixed%20Manna&rft.jtitle=arXiv.org&rft.au=Chaudhury,%20Bhaskar%20Ray&rft.date=2020-08-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2431125093%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24311250933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2431125093&rft_id=info:pmid/&rfr_iscdi=true |