Loading…
Study on the head-on collisions of two-dimensional trains of solitons
The head on collisions of trains of solitons induced by a two-dimensional submerged elliptical cylinder at critical speed in shallow water are studied based on velocity potential theory. The boundary value problems are solved through boundary element method (BEM). The nonlinear free surface boundary...
Saved in:
Published in: | Wave motion 2020-03, Vol.93, p.102450, Article 102450 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The head on collisions of trains of solitons induced by a two-dimensional submerged elliptical cylinder at critical speed in shallow water are studied based on velocity potential theory. The boundary value problems are solved through boundary element method (BEM). The nonlinear free surface boundary conditions are satisfied. The mixed Euler–Lagrangian method is adopted to track the free surface through a time stepping scheme. The effects of thickness and velocity of the elliptical cylinder on the evolution of solitary waves have been investigated. Two sets of solitons are truncated from these trains of solitary waves. The head-on collisions of these solitons have been simulated. The wave profiles and velocity fields during collision have been analysed. The propagation of solitary waves is the transmissions of kinetic energy and the collision processes are the results of the dynamic balance of potential energy and kinematic energy. |
---|---|
ISSN: | 0165-2125 1878-433X |
DOI: | 10.1016/j.wavemoti.2019.102450 |