Loading…

A review of the use of physical barriers to stop the spread of non-indigenous crayfish species

Invasive non-indigenous crayfish species (NICS) are a global threat to local flora and fauna. Total eradication of an entire population of invasive NICS is a difficult task; several methods have been tested and are still being used, with varying success. Most methods reduce population size and contr...

Full description

Saved in:
Bibliographic Details
Published in:Reviews in fish biology and fisheries 2020-09, Vol.30 (3), p.423-435
Main Authors: Krieg, Raphael, Zenker, Armin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Invasive non-indigenous crayfish species (NICS) are a global threat to local flora and fauna. Total eradication of an entire population of invasive NICS is a difficult task; several methods have been tested and are still being used, with varying success. Most methods reduce population size and control the species within the targeted area but do not majorly prevent further spread of NICS. However, construction of crayfish barriers can stop the spread of NICS and can therefore, be used to protect indigenous crayfish species (ICS). There are currently very few published scientific papers about this topic. This review reflects current knowledge on how to stop migration when NICS are established and provides useful information for the construction of barriers. The most important findings related to building a crayfish barrier are: the need for a vertical wall with an overhanging lip above the water surface; smooth sections to prevent crayfish from walking or climbing over the obstacle, combined with flow velocities of 0.65 m/s act as a barrier within the waterbody. Additionally, modifications to existing structures, bridges, culverts and dams reduce costs and increase effectiveness in stopping upstream migration of NICS. Barriers can negatively impact certain aquatic species, mainly benthic and slow swimming fish by preventing their migration and genetic exchange. However, they can have positive impacts for ICS and other indigenous organisms against the negative effects of NICS. Local legislation should support barrier construction to prevent the spread of invasive crayfish and other aquatic invaders to protect ark sites for ICS.
ISSN:0960-3166
1573-5184
DOI:10.1007/s11160-020-09606-y