Loading…
Supercritical Antisolvent Process for Pharmaceutical Applications: A Review
The supercritical antisolvent (SAS) technique has been widely employed in the biomedical field, including drug delivery, to obtain drug particles or polymer-based systems of nanometric or micrometric size. The primary purpose of producing SAS particles is to improve the treatment of different pathol...
Saved in:
Published in: | Processes 2020-08, Vol.8 (8), p.938 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The supercritical antisolvent (SAS) technique has been widely employed in the biomedical field, including drug delivery, to obtain drug particles or polymer-based systems of nanometric or micrometric size. The primary purpose of producing SAS particles is to improve the treatment of different pathologies and to better the patient’s compliance. In this context, many active compounds have been micronized to enhance their dissolution rate and bioavailability. Aiming for more effective treatments with reduced side effects caused by drug overdose, the SAS polymer/active principle coprecipitation has mainly been proposed to offer an adequate drug release for specific therapy. The demand for new formulations with reduced side effects on the patient’s health is still growing; in this context, the SAS technique is a promising tool to solve existing issues in the biomedical field. This updated review on the use of the SAS process for clinical applications provides useful information about the achievements, the most effective polymeric carriers, and parameters, as well as future perspectives. |
---|---|
ISSN: | 2227-9717 2227-9717 |
DOI: | 10.3390/pr8080938 |