Loading…

A review: Recent advances in sol‐gel‐derived hydroxyapatite nanocoatings for clinical applications

The prospect of modifying the surface properties of the substrate (or base) material to enhance its corrosion and wear resistance as well as its reliability, performance, and more importantly its bioactivity is made possible using nanocoatings. An effective technique of synthesizing high purity nano...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Ceramic Society 2020-09, Vol.103 (10), p.5442-5453
Main Authors: Choi, Gina, Choi, Andy H., Evans, Louise A., Akyol, Sibel, Ben‐Nissan, Besim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The prospect of modifying the surface properties of the substrate (or base) material to enhance its corrosion and wear resistance as well as its reliability, performance, and more importantly its bioactivity is made possible using nanocoatings. An effective technique of synthesizing high purity nanocoatings in addition to nanopowders and fibers is to utilize the sol‐gel approach. It is an attractive and versatile method that can be carried out with relative ease. Ceramic coatings, such as hydroxyapatite (HAp), can be fabricated through chemical means from solutions and consequently complex shapes can be coated economically. Given the fact that mixing takes place on the atomic scale, one of the key advantages of the sol‐gel technique is its capacity to produce homogeneous materials, and it has been shown that the mechanical properties of sol‐gel coatings are enhanced due to the presence of nanocrystalline grain structures. This review covers a brief insight into the recent application of HAp nanocoatings derived from sol‐gel technique.
ISSN:0002-7820
1551-2916
DOI:10.1111/jace.17118