Loading…

Boundary Control Problems for the Stationary Magnetic Hydrodynamic Equations in the Domain with Non-Ideal Boundary

Boundary control problems for a stationary model of magnetohydrodynamics of a viscous incompressible fluid are considered in a domain with non-ideal boundary. The role of the control is played by a tangential component of a magnetic field specified on an entire boundary. In the case when the control...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dynamical and control systems 2020-10, Vol.26 (4), p.641-661
Main Authors: Alekseev, G. V., Brizitskii, R. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-7e7e55d8d5ed4da6820a364ac17e2735d49c475aa6e2a668d7435f6e8c094d263
cites cdi_FETCH-LOGICAL-c319t-7e7e55d8d5ed4da6820a364ac17e2735d49c475aa6e2a668d7435f6e8c094d263
container_end_page 661
container_issue 4
container_start_page 641
container_title Journal of dynamical and control systems
container_volume 26
creator Alekseev, G. V.
Brizitskii, R. V.
description Boundary control problems for a stationary model of magnetohydrodynamics of a viscous incompressible fluid are considered in a domain with non-ideal boundary. The role of the control is played by a tangential component of a magnetic field specified on an entire boundary. In the case when the control function is square integrable, the solvability of the control problem is proved. Under assumption that control possesses a higher smoothness described by the space H s (Γ) 3 for any s > 0, an optimality system is derived. Based on the analysis of an optimality system, the local stability estimates of optimal solutions are established with respect to small perturbations of a cost functional.
doi_str_mv 10.1007/s10883-019-09474-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2431837561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2431837561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7e7e55d8d5ed4da6820a364ac17e2735d49c475aa6e2a668d7435f6e8c094d263</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEqXwA6wssTbY8TNLKIVWKg8JWFsmdtpUid3aiVD_HrcBsWM1M9K5M6OTZZcYXWOExE3ESEoCES4gKqigEB9lI8wEgZIX8jj1SBQwFzk9zc5iXCOECknkKAt3vndGhx2YeNcF34DX4D8b20ZQ-QC6lQVvne5q7_bMk14629UlmO1M8GbndJuG6bY_EBHU7pC4961O7VfdrcCzd3BurG7A76Xz7KTSTbQXP3WcfTxM3yczuHh5nE9uF7AkuOigsMIyZqRh1lCjucyRJpzqEgubC8IMLUoqmNbc5ppzaQQlrOJWlsmAyTkZZ1fD3k3w297GTq19H1w6qXJKsCSCcZyofKDK4GMMtlKbULfpTYWR2rtVg1uV3KqDW7UPkSEUE-yWNvyt_if1DepcfYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431837561</pqid></control><display><type>article</type><title>Boundary Control Problems for the Stationary Magnetic Hydrodynamic Equations in the Domain with Non-Ideal Boundary</title><source>Springer Link</source><creator>Alekseev, G. V. ; Brizitskii, R. V.</creator><creatorcontrib>Alekseev, G. V. ; Brizitskii, R. V.</creatorcontrib><description>Boundary control problems for a stationary model of magnetohydrodynamics of a viscous incompressible fluid are considered in a domain with non-ideal boundary. The role of the control is played by a tangential component of a magnetic field specified on an entire boundary. In the case when the control function is square integrable, the solvability of the control problem is proved. Under assumption that control possesses a higher smoothness described by the space H s (Γ) 3 for any s &gt; 0, an optimality system is derived. Based on the analysis of an optimality system, the local stability estimates of optimal solutions are established with respect to small perturbations of a cost functional.</description><identifier>ISSN: 1079-2724</identifier><identifier>EISSN: 1573-8698</identifier><identifier>DOI: 10.1007/s10883-019-09474-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Boundary control ; Calculus of Variations and Optimal Control; Optimization ; Computational fluid dynamics ; Control ; Dynamical Systems ; Dynamical Systems and Ergodic Theory ; Fluid flow ; Hydrodynamic equations ; Incompressible flow ; Incompressible fluids ; Magnetic domains ; Magnetohydrodynamics ; Mathematics ; Mathematics and Statistics ; Optimization ; Smoothness ; Stability analysis ; Systems Theory ; Vibration</subject><ispartof>Journal of dynamical and control systems, 2020-10, Vol.26 (4), p.641-661</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7e7e55d8d5ed4da6820a364ac17e2735d49c475aa6e2a668d7435f6e8c094d263</citedby><cites>FETCH-LOGICAL-c319t-7e7e55d8d5ed4da6820a364ac17e2735d49c475aa6e2a668d7435f6e8c094d263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Alekseev, G. V.</creatorcontrib><creatorcontrib>Brizitskii, R. V.</creatorcontrib><title>Boundary Control Problems for the Stationary Magnetic Hydrodynamic Equations in the Domain with Non-Ideal Boundary</title><title>Journal of dynamical and control systems</title><addtitle>J Dyn Control Syst</addtitle><description>Boundary control problems for a stationary model of magnetohydrodynamics of a viscous incompressible fluid are considered in a domain with non-ideal boundary. The role of the control is played by a tangential component of a magnetic field specified on an entire boundary. In the case when the control function is square integrable, the solvability of the control problem is proved. Under assumption that control possesses a higher smoothness described by the space H s (Γ) 3 for any s &gt; 0, an optimality system is derived. Based on the analysis of an optimality system, the local stability estimates of optimal solutions are established with respect to small perturbations of a cost functional.</description><subject>Boundary control</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computational fluid dynamics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Fluid flow</subject><subject>Hydrodynamic equations</subject><subject>Incompressible flow</subject><subject>Incompressible fluids</subject><subject>Magnetic domains</subject><subject>Magnetohydrodynamics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimization</subject><subject>Smoothness</subject><subject>Stability analysis</subject><subject>Systems Theory</subject><subject>Vibration</subject><issn>1079-2724</issn><issn>1573-8698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEEqXwA6wssTbY8TNLKIVWKg8JWFsmdtpUid3aiVD_HrcBsWM1M9K5M6OTZZcYXWOExE3ESEoCES4gKqigEB9lI8wEgZIX8jj1SBQwFzk9zc5iXCOECknkKAt3vndGhx2YeNcF34DX4D8b20ZQ-QC6lQVvne5q7_bMk14629UlmO1M8GbndJuG6bY_EBHU7pC4961O7VfdrcCzd3BurG7A76Xz7KTSTbQXP3WcfTxM3yczuHh5nE9uF7AkuOigsMIyZqRh1lCjucyRJpzqEgubC8IMLUoqmNbc5ppzaQQlrOJWlsmAyTkZZ1fD3k3w297GTq19H1w6qXJKsCSCcZyofKDK4GMMtlKbULfpTYWR2rtVg1uV3KqDW7UPkSEUE-yWNvyt_if1DepcfYA</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Alekseev, G. V.</creator><creator>Brizitskii, R. V.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201001</creationdate><title>Boundary Control Problems for the Stationary Magnetic Hydrodynamic Equations in the Domain with Non-Ideal Boundary</title><author>Alekseev, G. V. ; Brizitskii, R. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7e7e55d8d5ed4da6820a364ac17e2735d49c475aa6e2a668d7435f6e8c094d263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boundary control</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computational fluid dynamics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Fluid flow</topic><topic>Hydrodynamic equations</topic><topic>Incompressible flow</topic><topic>Incompressible fluids</topic><topic>Magnetic domains</topic><topic>Magnetohydrodynamics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimization</topic><topic>Smoothness</topic><topic>Stability analysis</topic><topic>Systems Theory</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alekseev, G. V.</creatorcontrib><creatorcontrib>Brizitskii, R. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of dynamical and control systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alekseev, G. V.</au><au>Brizitskii, R. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary Control Problems for the Stationary Magnetic Hydrodynamic Equations in the Domain with Non-Ideal Boundary</atitle><jtitle>Journal of dynamical and control systems</jtitle><stitle>J Dyn Control Syst</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>26</volume><issue>4</issue><spage>641</spage><epage>661</epage><pages>641-661</pages><issn>1079-2724</issn><eissn>1573-8698</eissn><abstract>Boundary control problems for a stationary model of magnetohydrodynamics of a viscous incompressible fluid are considered in a domain with non-ideal boundary. The role of the control is played by a tangential component of a magnetic field specified on an entire boundary. In the case when the control function is square integrable, the solvability of the control problem is proved. Under assumption that control possesses a higher smoothness described by the space H s (Γ) 3 for any s &gt; 0, an optimality system is derived. Based on the analysis of an optimality system, the local stability estimates of optimal solutions are established with respect to small perturbations of a cost functional.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10883-019-09474-1</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1079-2724
ispartof Journal of dynamical and control systems, 2020-10, Vol.26 (4), p.641-661
issn 1079-2724
1573-8698
language eng
recordid cdi_proquest_journals_2431837561
source Springer Link
subjects Boundary control
Calculus of Variations and Optimal Control
Optimization
Computational fluid dynamics
Control
Dynamical Systems
Dynamical Systems and Ergodic Theory
Fluid flow
Hydrodynamic equations
Incompressible flow
Incompressible fluids
Magnetic domains
Magnetohydrodynamics
Mathematics
Mathematics and Statistics
Optimization
Smoothness
Stability analysis
Systems Theory
Vibration
title Boundary Control Problems for the Stationary Magnetic Hydrodynamic Equations in the Domain with Non-Ideal Boundary
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A30%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20Control%20Problems%20for%20the%20Stationary%20Magnetic%20Hydrodynamic%20Equations%20in%20the%20Domain%20with%20Non-Ideal%20Boundary&rft.jtitle=Journal%20of%20dynamical%20and%20control%20systems&rft.au=Alekseev,%20G.%20V.&rft.date=2020-10-01&rft.volume=26&rft.issue=4&rft.spage=641&rft.epage=661&rft.pages=641-661&rft.issn=1079-2724&rft.eissn=1573-8698&rft_id=info:doi/10.1007/s10883-019-09474-1&rft_dat=%3Cproquest_cross%3E2431837561%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-7e7e55d8d5ed4da6820a364ac17e2735d49c475aa6e2a668d7435f6e8c094d263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2431837561&rft_id=info:pmid/&rfr_iscdi=true