Loading…

Bio-inspired head detection framework based on online learning algorithm

Online learning algorithms have been widely used to address vision-related issues such as object detection and tracking. However, a robust online learning object detection system that can continuously improve performance through self-learning continues to elude designers. This study proposes a novel...

Full description

Saved in:
Bibliographic Details
Published in:Multimedia tools and applications 2020-07, Vol.79 (27-28), p.19509-19536
Main Authors: Luo, Dapeng, Mou, Quanzheng, Zeng, Zhipeng, Luo, Chen, Wei, Longsheng, Zhang, Xiangli
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-97a3cd697db1d1988b8354e2d7a101431500a8a78a22488f15ab480866624bcb3
container_end_page 19536
container_issue 27-28
container_start_page 19509
container_title Multimedia tools and applications
container_volume 79
creator Luo, Dapeng
Mou, Quanzheng
Zeng, Zhipeng
Luo, Chen
Wei, Longsheng
Zhang, Xiangli
description Online learning algorithms have been widely used to address vision-related issues such as object detection and tracking. However, a robust online learning object detection system that can continuously improve performance through self-learning continues to elude designers. This study proposes a novel online learning framework, which combines detection and verification modules to train a scene-specific head detector on a fly. For the detection module, a proposed online bootstrap cascade classifier is employed as the object detector of the framework. The cascade decision strategy is used to integrate a number of weak online classifiers. The resulting system contains sufficient weak classifiers and maintains a low computation cost. During the online learning process, the complexity of the cascade structure adapts to the difficulty of the detection task. For the verification module, a simple yet effective particle filter tracking algorithm, based on information fusion, is used to automatically label online learning samples produced by detection responses. With this method, the object detector improves detection performance by autonomously learning the samples. The online head detection framework is ported to the NVIDIA Jetson TK1 embedded platform, which enables the platform to recognize different head postures through self-learning. Experimental results on three video datasets demonstrate the effectiveness of the framework.
doi_str_mv 10.1007/s11042-020-08744-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2432263177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2432263177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-97a3cd697db1d1988b8354e2d7a101431500a8a78a22488f15ab480866624bcb3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-hMkk3Soxa1QsGLnkN2N9umbpOabBH_vdEK3jzNMPN-wEPIJcI1AqibjAiCUWBAQSshqDwiE6wVp0oxPC4710BVDXhKznLeAKCsmZiQxZ2P1Ie888l11drZrurc6NrRx1D1yW7dR0xvVWNzeZdTDIMPrhqcTcGHVWWHVUx-XG_PyUlvh-wufueUvD7cv8wXdPn8-DS_XdKWKRjpTFnednKmugY7nGndaF4LxzplEVBwrAGstkpbxoTWPda2ERq0lJKJpm34lFwdcncpvu9dHs0m7lMolYYJzpjkqFRRsYOqTTHn5HqzS35r06dBMN_EzIGYKcTMDzEji4kfTLmIw8qlv-h_XF9TPG0P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2432263177</pqid></control><display><type>article</type><title>Bio-inspired head detection framework based on online learning algorithm</title><source>ABI/INFORM Global (ProQuest)</source><source>Springer Nature</source><creator>Luo, Dapeng ; Mou, Quanzheng ; Zeng, Zhipeng ; Luo, Chen ; Wei, Longsheng ; Zhang, Xiangli</creator><creatorcontrib>Luo, Dapeng ; Mou, Quanzheng ; Zeng, Zhipeng ; Luo, Chen ; Wei, Longsheng ; Zhang, Xiangli</creatorcontrib><description>Online learning algorithms have been widely used to address vision-related issues such as object detection and tracking. However, a robust online learning object detection system that can continuously improve performance through self-learning continues to elude designers. This study proposes a novel online learning framework, which combines detection and verification modules to train a scene-specific head detector on a fly. For the detection module, a proposed online bootstrap cascade classifier is employed as the object detector of the framework. The cascade decision strategy is used to integrate a number of weak online classifiers. The resulting system contains sufficient weak classifiers and maintains a low computation cost. During the online learning process, the complexity of the cascade structure adapts to the difficulty of the detection task. For the verification module, a simple yet effective particle filter tracking algorithm, based on information fusion, is used to automatically label online learning samples produced by detection responses. With this method, the object detector improves detection performance by autonomously learning the samples. The online head detection framework is ported to the NVIDIA Jetson TK1 embedded platform, which enables the platform to recognize different head postures through self-learning. Experimental results on three video datasets demonstrate the effectiveness of the framework.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-020-08744-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Classifiers ; Computer Communication Networks ; Computer Science ; Data integration ; Data Structures and Information Theory ; Distance learning ; Machine learning ; Modules ; Multimedia Information Systems ; Object recognition ; On-line systems ; Performance enhancement ; Sensors ; Special Purpose and Application-Based Systems ; Tracking ; Verification</subject><ispartof>Multimedia tools and applications, 2020-07, Vol.79 (27-28), p.19509-19536</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-97a3cd697db1d1988b8354e2d7a101431500a8a78a22488f15ab480866624bcb3</cites><orcidid>0000-0003-2492-5510</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2432263177/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2432263177?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11687,27923,27924,36059,44362,74766</link.rule.ids></links><search><creatorcontrib>Luo, Dapeng</creatorcontrib><creatorcontrib>Mou, Quanzheng</creatorcontrib><creatorcontrib>Zeng, Zhipeng</creatorcontrib><creatorcontrib>Luo, Chen</creatorcontrib><creatorcontrib>Wei, Longsheng</creatorcontrib><creatorcontrib>Zhang, Xiangli</creatorcontrib><title>Bio-inspired head detection framework based on online learning algorithm</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Online learning algorithms have been widely used to address vision-related issues such as object detection and tracking. However, a robust online learning object detection system that can continuously improve performance through self-learning continues to elude designers. This study proposes a novel online learning framework, which combines detection and verification modules to train a scene-specific head detector on a fly. For the detection module, a proposed online bootstrap cascade classifier is employed as the object detector of the framework. The cascade decision strategy is used to integrate a number of weak online classifiers. The resulting system contains sufficient weak classifiers and maintains a low computation cost. During the online learning process, the complexity of the cascade structure adapts to the difficulty of the detection task. For the verification module, a simple yet effective particle filter tracking algorithm, based on information fusion, is used to automatically label online learning samples produced by detection responses. With this method, the object detector improves detection performance by autonomously learning the samples. The online head detection framework is ported to the NVIDIA Jetson TK1 embedded platform, which enables the platform to recognize different head postures through self-learning. Experimental results on three video datasets demonstrate the effectiveness of the framework.</description><subject>Algorithms</subject><subject>Classifiers</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data integration</subject><subject>Data Structures and Information Theory</subject><subject>Distance learning</subject><subject>Machine learning</subject><subject>Modules</subject><subject>Multimedia Information Systems</subject><subject>Object recognition</subject><subject>On-line systems</subject><subject>Performance enhancement</subject><subject>Sensors</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Tracking</subject><subject>Verification</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-hMkk3Soxa1QsGLnkN2N9umbpOabBH_vdEK3jzNMPN-wEPIJcI1AqibjAiCUWBAQSshqDwiE6wVp0oxPC4710BVDXhKznLeAKCsmZiQxZ2P1Ie888l11drZrurc6NrRx1D1yW7dR0xvVWNzeZdTDIMPrhqcTcGHVWWHVUx-XG_PyUlvh-wufueUvD7cv8wXdPn8-DS_XdKWKRjpTFnednKmugY7nGndaF4LxzplEVBwrAGstkpbxoTWPda2ERq0lJKJpm34lFwdcncpvu9dHs0m7lMolYYJzpjkqFRRsYOqTTHn5HqzS35r06dBMN_EzIGYKcTMDzEji4kfTLmIw8qlv-h_XF9TPG0P</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Luo, Dapeng</creator><creator>Mou, Quanzheng</creator><creator>Zeng, Zhipeng</creator><creator>Luo, Chen</creator><creator>Wei, Longsheng</creator><creator>Zhang, Xiangli</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-2492-5510</orcidid></search><sort><creationdate>20200701</creationdate><title>Bio-inspired head detection framework based on online learning algorithm</title><author>Luo, Dapeng ; Mou, Quanzheng ; Zeng, Zhipeng ; Luo, Chen ; Wei, Longsheng ; Zhang, Xiangli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-97a3cd697db1d1988b8354e2d7a101431500a8a78a22488f15ab480866624bcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Classifiers</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data integration</topic><topic>Data Structures and Information Theory</topic><topic>Distance learning</topic><topic>Machine learning</topic><topic>Modules</topic><topic>Multimedia Information Systems</topic><topic>Object recognition</topic><topic>On-line systems</topic><topic>Performance enhancement</topic><topic>Sensors</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Tracking</topic><topic>Verification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Dapeng</creatorcontrib><creatorcontrib>Mou, Quanzheng</creatorcontrib><creatorcontrib>Zeng, Zhipeng</creatorcontrib><creatorcontrib>Luo, Chen</creatorcontrib><creatorcontrib>Wei, Longsheng</creatorcontrib><creatorcontrib>Zhang, Xiangli</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Computing Database</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Dapeng</au><au>Mou, Quanzheng</au><au>Zeng, Zhipeng</au><au>Luo, Chen</au><au>Wei, Longsheng</au><au>Zhang, Xiangli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio-inspired head detection framework based on online learning algorithm</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>79</volume><issue>27-28</issue><spage>19509</spage><epage>19536</epage><pages>19509-19536</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Online learning algorithms have been widely used to address vision-related issues such as object detection and tracking. However, a robust online learning object detection system that can continuously improve performance through self-learning continues to elude designers. This study proposes a novel online learning framework, which combines detection and verification modules to train a scene-specific head detector on a fly. For the detection module, a proposed online bootstrap cascade classifier is employed as the object detector of the framework. The cascade decision strategy is used to integrate a number of weak online classifiers. The resulting system contains sufficient weak classifiers and maintains a low computation cost. During the online learning process, the complexity of the cascade structure adapts to the difficulty of the detection task. For the verification module, a simple yet effective particle filter tracking algorithm, based on information fusion, is used to automatically label online learning samples produced by detection responses. With this method, the object detector improves detection performance by autonomously learning the samples. The online head detection framework is ported to the NVIDIA Jetson TK1 embedded platform, which enables the platform to recognize different head postures through self-learning. Experimental results on three video datasets demonstrate the effectiveness of the framework.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-020-08744-6</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0003-2492-5510</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2020-07, Vol.79 (27-28), p.19509-19536
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2432263177
source ABI/INFORM Global (ProQuest); Springer Nature
subjects Algorithms
Classifiers
Computer Communication Networks
Computer Science
Data integration
Data Structures and Information Theory
Distance learning
Machine learning
Modules
Multimedia Information Systems
Object recognition
On-line systems
Performance enhancement
Sensors
Special Purpose and Application-Based Systems
Tracking
Verification
title Bio-inspired head detection framework based on online learning algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A20%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio-inspired%20head%20detection%20framework%20based%20on%20online%20learning%20algorithm&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Luo,%20Dapeng&rft.date=2020-07-01&rft.volume=79&rft.issue=27-28&rft.spage=19509&rft.epage=19536&rft.pages=19509-19536&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-020-08744-6&rft_dat=%3Cproquest_cross%3E2432263177%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-97a3cd697db1d1988b8354e2d7a101431500a8a78a22488f15ab480866624bcb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2432263177&rft_id=info:pmid/&rfr_iscdi=true