Loading…
Suitable Weak Solutions for the Co-rotational Beris–Edwards System in Dimension Three
In this paper, we establish the global existence of a suitable weak solution to the co-rotational Beris–Edwards Q -tensor system modeling the hydrodynamic motion of nematic liquid crystals with either Landau–De Gennes bulk potential in R 3 or Ball–Majumdar bulk potential in T 3 , a system coupling t...
Saved in:
Published in: | Archive for rational mechanics and analysis 2020-11, Vol.238 (2), p.749-803 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-d49e28e9aaafbe08a28138134ac02fc4a4b73e096ecc8b7db47a2a6232192ebd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-d49e28e9aaafbe08a28138134ac02fc4a4b73e096ecc8b7db47a2a6232192ebd3 |
container_end_page | 803 |
container_issue | 2 |
container_start_page | 749 |
container_title | Archive for rational mechanics and analysis |
container_volume | 238 |
creator | Du, Hengrong Hu, Xianpeng Wang, Changyou |
description | In this paper, we establish the global existence of a suitable weak solution to the co-rotational Beris–Edwards
Q
-tensor system modeling the hydrodynamic motion of nematic liquid crystals with either Landau–De Gennes bulk potential in
R
3
or Ball–Majumdar bulk potential in
T
3
, a system coupling the forced incompressible Navier–Stokes equation with a dissipative, parabolic system of
Q
-tensor
Q
in
R
3
, which is shown to be smooth away from a closed set
Σ
whose 1-dimensional parabolic Hausdorff measure is zero. |
doi_str_mv | 10.1007/s00205-020-01554-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2432687394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2432687394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d49e28e9aaafbe08a28138134ac02fc4a4b73e096ecc8b7db47a2a6232192ebd3</originalsourceid><addsrcrecordid>eNp9UMtKA0EQHETBGP0BTwOeR-e1r6PG-ICAh0RyHHp3e83GzU6c2SB78x_8Q7_EiSt4E5pquqkquouQc8EvBefJledc8ogFYFxEkWb9ARkJrSTjcaIOyYhzrlgWyeSYnHi_3o9SxSOynO_qDvIG6RLhlc5ts-tq23paWUe7FdKJZc52sF9CQ2_Q1f7r43NavoMrPZ33vsMNrVt6W2-w9YFFFyuHeEqOKmg8nv32MXm-my4mD2z2dP84uZ6xQomsY6XOUKaYAUCVI09BpkKF0lBwWRUadJ4o5FmMRZHmSZnrBCTEUkmRScxLNSYXg-_W2bcd-s6s7c6FU72R4f04TVSmA0sOrMJZ7x1WZuvqDbjeCG72AZohQBPA_ARo-iBSg8gHcvuC7s_6H9U3K7p1WA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2432687394</pqid></control><display><type>article</type><title>Suitable Weak Solutions for the Co-rotational Beris–Edwards System in Dimension Three</title><source>Springer Nature</source><creator>Du, Hengrong ; Hu, Xianpeng ; Wang, Changyou</creator><creatorcontrib>Du, Hengrong ; Hu, Xianpeng ; Wang, Changyou</creatorcontrib><description>In this paper, we establish the global existence of a suitable weak solution to the co-rotational Beris–Edwards
Q
-tensor system modeling the hydrodynamic motion of nematic liquid crystals with either Landau–De Gennes bulk potential in
R
3
or Ball–Majumdar bulk potential in
T
3
, a system coupling the forced incompressible Navier–Stokes equation with a dissipative, parabolic system of
Q
-tensor
Q
in
R
3
, which is shown to be smooth away from a closed set
Σ
whose 1-dimensional parabolic Hausdorff measure is zero.</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-020-01554-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical Mechanics ; Complex Systems ; Computational fluid dynamics ; Fluid- and Aerodynamics ; Liquid crystals ; Mathematical and Computational Physics ; Nematic crystals ; Physics ; Physics and Astronomy ; Tensors ; Theoretical</subject><ispartof>Archive for rational mechanics and analysis, 2020-11, Vol.238 (2), p.749-803</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d49e28e9aaafbe08a28138134ac02fc4a4b73e096ecc8b7db47a2a6232192ebd3</citedby><cites>FETCH-LOGICAL-c319t-d49e28e9aaafbe08a28138134ac02fc4a4b73e096ecc8b7db47a2a6232192ebd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Du, Hengrong</creatorcontrib><creatorcontrib>Hu, Xianpeng</creatorcontrib><creatorcontrib>Wang, Changyou</creatorcontrib><title>Suitable Weak Solutions for the Co-rotational Beris–Edwards System in Dimension Three</title><title>Archive for rational mechanics and analysis</title><addtitle>Arch Rational Mech Anal</addtitle><description>In this paper, we establish the global existence of a suitable weak solution to the co-rotational Beris–Edwards
Q
-tensor system modeling the hydrodynamic motion of nematic liquid crystals with either Landau–De Gennes bulk potential in
R
3
or Ball–Majumdar bulk potential in
T
3
, a system coupling the forced incompressible Navier–Stokes equation with a dissipative, parabolic system of
Q
-tensor
Q
in
R
3
, which is shown to be smooth away from a closed set
Σ
whose 1-dimensional parabolic Hausdorff measure is zero.</description><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Computational fluid dynamics</subject><subject>Fluid- and Aerodynamics</subject><subject>Liquid crystals</subject><subject>Mathematical and Computational Physics</subject><subject>Nematic crystals</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Tensors</subject><subject>Theoretical</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKA0EQHETBGP0BTwOeR-e1r6PG-ICAh0RyHHp3e83GzU6c2SB78x_8Q7_EiSt4E5pquqkquouQc8EvBefJledc8ogFYFxEkWb9ARkJrSTjcaIOyYhzrlgWyeSYnHi_3o9SxSOynO_qDvIG6RLhlc5ts-tq23paWUe7FdKJZc52sF9CQ2_Q1f7r43NavoMrPZ33vsMNrVt6W2-w9YFFFyuHeEqOKmg8nv32MXm-my4mD2z2dP84uZ6xQomsY6XOUKaYAUCVI09BpkKF0lBwWRUadJ4o5FmMRZHmSZnrBCTEUkmRScxLNSYXg-_W2bcd-s6s7c6FU72R4f04TVSmA0sOrMJZ7x1WZuvqDbjeCG72AZohQBPA_ARo-iBSg8gHcvuC7s_6H9U3K7p1WA</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Du, Hengrong</creator><creator>Hu, Xianpeng</creator><creator>Wang, Changyou</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20201101</creationdate><title>Suitable Weak Solutions for the Co-rotational Beris–Edwards System in Dimension Three</title><author>Du, Hengrong ; Hu, Xianpeng ; Wang, Changyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d49e28e9aaafbe08a28138134ac02fc4a4b73e096ecc8b7db47a2a6232192ebd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Computational fluid dynamics</topic><topic>Fluid- and Aerodynamics</topic><topic>Liquid crystals</topic><topic>Mathematical and Computational Physics</topic><topic>Nematic crystals</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Tensors</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Hengrong</creatorcontrib><creatorcontrib>Hu, Xianpeng</creatorcontrib><creatorcontrib>Wang, Changyou</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Hengrong</au><au>Hu, Xianpeng</au><au>Wang, Changyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suitable Weak Solutions for the Co-rotational Beris–Edwards System in Dimension Three</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><stitle>Arch Rational Mech Anal</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>238</volume><issue>2</issue><spage>749</spage><epage>803</epage><pages>749-803</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><abstract>In this paper, we establish the global existence of a suitable weak solution to the co-rotational Beris–Edwards
Q
-tensor system modeling the hydrodynamic motion of nematic liquid crystals with either Landau–De Gennes bulk potential in
R
3
or Ball–Majumdar bulk potential in
T
3
, a system coupling the forced incompressible Navier–Stokes equation with a dissipative, parabolic system of
Q
-tensor
Q
in
R
3
, which is shown to be smooth away from a closed set
Σ
whose 1-dimensional parabolic Hausdorff measure is zero.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00205-020-01554-y</doi><tpages>55</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-9527 |
ispartof | Archive for rational mechanics and analysis, 2020-11, Vol.238 (2), p.749-803 |
issn | 0003-9527 1432-0673 |
language | eng |
recordid | cdi_proquest_journals_2432687394 |
source | Springer Nature |
subjects | Classical Mechanics Complex Systems Computational fluid dynamics Fluid- and Aerodynamics Liquid crystals Mathematical and Computational Physics Nematic crystals Physics Physics and Astronomy Tensors Theoretical |
title | Suitable Weak Solutions for the Co-rotational Beris–Edwards System in Dimension Three |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A46%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suitable%20Weak%20Solutions%20for%20the%20Co-rotational%20Beris%E2%80%93Edwards%20System%20in%20Dimension%20Three&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Du,%20Hengrong&rft.date=2020-11-01&rft.volume=238&rft.issue=2&rft.spage=749&rft.epage=803&rft.pages=749-803&rft.issn=0003-9527&rft.eissn=1432-0673&rft_id=info:doi/10.1007/s00205-020-01554-y&rft_dat=%3Cproquest_cross%3E2432687394%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-d49e28e9aaafbe08a28138134ac02fc4a4b73e096ecc8b7db47a2a6232192ebd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2432687394&rft_id=info:pmid/&rfr_iscdi=true |