Loading…

Discontinuous Computation Offloading for Energy-Efficient Mobile Edge Computing

We propose a novel strategy for energy-efficient dynamic computation offloading, in the context of edge-computing-aided beyond 5G networks. The goal is to minimize the energy consumption of the overall system, comprising multiple User Equipment (UE), an access point (AP), and an edge server (ES), un...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-12
Main Authors: Merluzzi, Mattia, Nicola di Pietro, Paolo Di Lorenzo, Emilio Calvanese Strinati, Barbarossa, Sergio
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Merluzzi, Mattia
Nicola di Pietro
Paolo Di Lorenzo
Emilio Calvanese Strinati
Barbarossa, Sergio
description We propose a novel strategy for energy-efficient dynamic computation offloading, in the context of edge-computing-aided beyond 5G networks. The goal is to minimize the energy consumption of the overall system, comprising multiple User Equipment (UE), an access point (AP), and an edge server (ES), under constraints on the end-to-end service delay and the packet error rate performance over the wireless interface. To reduce the energy consumption, we exploit low-power sleep operation modes for the users, the AP and the ES, shifting the edge computing paradigm from an always on to an always available architecture, capable of guaranteeing an on-demand target service quality with the minimum energy consumption. To this aim, we propose an online algorithm for dynamic and optimal orchestration of radio and computational resources called Discontinuous Computation Offloading (DisCO). In such a framework, end-to-end delay constraints translate into constraints on overall queueing delays, including both the communication and the computation phases of the offloading service. DisCO hinges on Lyapunov stochastic optimization, does not require any prior knowledge on the statistics of the offloading traffic or the radio channels, and satisfies the long-term performance constraints imposed by the users. Several numerical results illustrate the advantages of the proposed method.
doi_str_mv 10.48550/arxiv.2008.03508
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2432704109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2432704109</sourcerecordid><originalsourceid>FETCH-LOGICAL-a529-e0572431676e7d9fad5890eb4dc8033d99509287f6cf98a4968220d636c9d2353</originalsourceid><addsrcrecordid>eNotjc1Kw0AURgdBsNQ-gLuA69SbO_9LiVELlWy6L9PMTJgSZ2omEX17A3b1bc45HyEPFWyZ4hyezPgTvrcIoLZAOagbskJKq1IxxDuyyfkMACgkck5XpH0JuUtxCnFOcy7q9HmZJzOFFIvW-yEZG2Jf-DQWTXRj_1s23ocuuDgVH-kUBlc0tndXb0Hvya03Q3ab667J4bU51O_lvn3b1c_70nDUpQMukdFKSOGk1d5YrjS4E7OdAkqt1hw0KulF57UyTAuFCFZQ0WmLlNM1efzPXsb0Nbs8Hc9pHuPyeFy6KIFVoOkfv0pPeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2432704109</pqid></control><display><type>article</type><title>Discontinuous Computation Offloading for Energy-Efficient Mobile Edge Computing</title><source>Publicly Available Content (ProQuest)</source><creator>Merluzzi, Mattia ; Nicola di Pietro ; Paolo Di Lorenzo ; Emilio Calvanese Strinati ; Barbarossa, Sergio</creator><creatorcontrib>Merluzzi, Mattia ; Nicola di Pietro ; Paolo Di Lorenzo ; Emilio Calvanese Strinati ; Barbarossa, Sergio</creatorcontrib><description>We propose a novel strategy for energy-efficient dynamic computation offloading, in the context of edge-computing-aided beyond 5G networks. The goal is to minimize the energy consumption of the overall system, comprising multiple User Equipment (UE), an access point (AP), and an edge server (ES), under constraints on the end-to-end service delay and the packet error rate performance over the wireless interface. To reduce the energy consumption, we exploit low-power sleep operation modes for the users, the AP and the ES, shifting the edge computing paradigm from an always on to an always available architecture, capable of guaranteeing an on-demand target service quality with the minimum energy consumption. To this aim, we propose an online algorithm for dynamic and optimal orchestration of radio and computational resources called Discontinuous Computation Offloading (DisCO). In such a framework, end-to-end delay constraints translate into constraints on overall queueing delays, including both the communication and the computation phases of the offloading service. DisCO hinges on Lyapunov stochastic optimization, does not require any prior knowledge on the statistics of the offloading traffic or the radio channels, and satisfies the long-term performance constraints imposed by the users. Several numerical results illustrate the advantages of the proposed method.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2008.03508</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Computation offloading ; Edge computing ; Energy conservation ; Energy consumption ; Mobile computing ; Optimization ; Power consumption ; Quality of service architectures ; Queues ; User satisfaction</subject><ispartof>arXiv.org, 2021-12</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2432704109?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Merluzzi, Mattia</creatorcontrib><creatorcontrib>Nicola di Pietro</creatorcontrib><creatorcontrib>Paolo Di Lorenzo</creatorcontrib><creatorcontrib>Emilio Calvanese Strinati</creatorcontrib><creatorcontrib>Barbarossa, Sergio</creatorcontrib><title>Discontinuous Computation Offloading for Energy-Efficient Mobile Edge Computing</title><title>arXiv.org</title><description>We propose a novel strategy for energy-efficient dynamic computation offloading, in the context of edge-computing-aided beyond 5G networks. The goal is to minimize the energy consumption of the overall system, comprising multiple User Equipment (UE), an access point (AP), and an edge server (ES), under constraints on the end-to-end service delay and the packet error rate performance over the wireless interface. To reduce the energy consumption, we exploit low-power sleep operation modes for the users, the AP and the ES, shifting the edge computing paradigm from an always on to an always available architecture, capable of guaranteeing an on-demand target service quality with the minimum energy consumption. To this aim, we propose an online algorithm for dynamic and optimal orchestration of radio and computational resources called Discontinuous Computation Offloading (DisCO). In such a framework, end-to-end delay constraints translate into constraints on overall queueing delays, including both the communication and the computation phases of the offloading service. DisCO hinges on Lyapunov stochastic optimization, does not require any prior knowledge on the statistics of the offloading traffic or the radio channels, and satisfies the long-term performance constraints imposed by the users. Several numerical results illustrate the advantages of the proposed method.</description><subject>Algorithms</subject><subject>Computation offloading</subject><subject>Edge computing</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Mobile computing</subject><subject>Optimization</subject><subject>Power consumption</subject><subject>Quality of service architectures</subject><subject>Queues</subject><subject>User satisfaction</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjc1Kw0AURgdBsNQ-gLuA69SbO_9LiVELlWy6L9PMTJgSZ2omEX17A3b1bc45HyEPFWyZ4hyezPgTvrcIoLZAOagbskJKq1IxxDuyyfkMACgkck5XpH0JuUtxCnFOcy7q9HmZJzOFFIvW-yEZG2Jf-DQWTXRj_1s23ocuuDgVH-kUBlc0tndXb0Hvya03Q3ab667J4bU51O_lvn3b1c_70nDUpQMukdFKSOGk1d5YrjS4E7OdAkqt1hw0KulF57UyTAuFCFZQ0WmLlNM1efzPXsb0Nbs8Hc9pHuPyeFy6KIFVoOkfv0pPeg</recordid><startdate>20211221</startdate><enddate>20211221</enddate><creator>Merluzzi, Mattia</creator><creator>Nicola di Pietro</creator><creator>Paolo Di Lorenzo</creator><creator>Emilio Calvanese Strinati</creator><creator>Barbarossa, Sergio</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211221</creationdate><title>Discontinuous Computation Offloading for Energy-Efficient Mobile Edge Computing</title><author>Merluzzi, Mattia ; Nicola di Pietro ; Paolo Di Lorenzo ; Emilio Calvanese Strinati ; Barbarossa, Sergio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a529-e0572431676e7d9fad5890eb4dc8033d99509287f6cf98a4968220d636c9d2353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Computation offloading</topic><topic>Edge computing</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Mobile computing</topic><topic>Optimization</topic><topic>Power consumption</topic><topic>Quality of service architectures</topic><topic>Queues</topic><topic>User satisfaction</topic><toplevel>online_resources</toplevel><creatorcontrib>Merluzzi, Mattia</creatorcontrib><creatorcontrib>Nicola di Pietro</creatorcontrib><creatorcontrib>Paolo Di Lorenzo</creatorcontrib><creatorcontrib>Emilio Calvanese Strinati</creatorcontrib><creatorcontrib>Barbarossa, Sergio</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merluzzi, Mattia</au><au>Nicola di Pietro</au><au>Paolo Di Lorenzo</au><au>Emilio Calvanese Strinati</au><au>Barbarossa, Sergio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discontinuous Computation Offloading for Energy-Efficient Mobile Edge Computing</atitle><jtitle>arXiv.org</jtitle><date>2021-12-21</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We propose a novel strategy for energy-efficient dynamic computation offloading, in the context of edge-computing-aided beyond 5G networks. The goal is to minimize the energy consumption of the overall system, comprising multiple User Equipment (UE), an access point (AP), and an edge server (ES), under constraints on the end-to-end service delay and the packet error rate performance over the wireless interface. To reduce the energy consumption, we exploit low-power sleep operation modes for the users, the AP and the ES, shifting the edge computing paradigm from an always on to an always available architecture, capable of guaranteeing an on-demand target service quality with the minimum energy consumption. To this aim, we propose an online algorithm for dynamic and optimal orchestration of radio and computational resources called Discontinuous Computation Offloading (DisCO). In such a framework, end-to-end delay constraints translate into constraints on overall queueing delays, including both the communication and the computation phases of the offloading service. DisCO hinges on Lyapunov stochastic optimization, does not require any prior knowledge on the statistics of the offloading traffic or the radio channels, and satisfies the long-term performance constraints imposed by the users. Several numerical results illustrate the advantages of the proposed method.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2008.03508</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2432704109
source Publicly Available Content (ProQuest)
subjects Algorithms
Computation offloading
Edge computing
Energy conservation
Energy consumption
Mobile computing
Optimization
Power consumption
Quality of service architectures
Queues
User satisfaction
title Discontinuous Computation Offloading for Energy-Efficient Mobile Edge Computing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A04%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discontinuous%20Computation%20Offloading%20for%20Energy-Efficient%20Mobile%20Edge%20Computing&rft.jtitle=arXiv.org&rft.au=Merluzzi,%20Mattia&rft.date=2021-12-21&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2008.03508&rft_dat=%3Cproquest%3E2432704109%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a529-e0572431676e7d9fad5890eb4dc8033d99509287f6cf98a4968220d636c9d2353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2432704109&rft_id=info:pmid/&rfr_iscdi=true