Loading…
Double Diffusion Encoding for Probing Radiation‐Induced Microstructural Changes in a Tumor Model: A Proof‐of‐Concept Study With Comparison to the Apparent Diffusion Coefficient and Histology
Background Microstructure analyses are gaining interest in cancer MRI as an alternative to the conventional apparent diffusion coefficient (ADC), of which the determinants remain unclear. Purpose To assess the sensitivity of parameters calculated from a double diffusion encoding (DDE) sequence to ch...
Saved in:
Published in: | Journal of magnetic resonance imaging 2020-09, Vol.52 (3), p.941-951 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3579-f10c382877b0bd1c6f12d677e527ebe089a13d09662af4bf7bbc18072fd6c4393 |
---|---|
cites | cdi_FETCH-LOGICAL-c3579-f10c382877b0bd1c6f12d677e527ebe089a13d09662af4bf7bbc18072fd6c4393 |
container_end_page | 951 |
container_issue | 3 |
container_start_page | 941 |
container_title | Journal of magnetic resonance imaging |
container_volume | 52 |
creator | Duchêne, Gaëtan Abarca‐Quinones, Jorge Feza‐Bingi, Natacha Leclercq, Isabelle Duprez, Thierry Peeters, Frank |
description | Background
Microstructure analyses are gaining interest in cancer MRI as an alternative to the conventional apparent diffusion coefficient (ADC), of which the determinants remain unclear.
Purpose
To assess the sensitivity of parameters calculated from a double diffusion encoding (DDE) sequence to changes in a tumor's microstructure early after radiotherapy and to compare them with ADC and histology.
Study Type
Cohort study on experimental tumors.
Animal Model
Sixteen WAG/Rij rats grafted with one rhabdomyosarcoma fragment in each thigh. Thirty‐one were imaged at days 1 and 4, of which 17 tumors received a 20 Gy radiation dose after the first imagery.
Field Strength/Sequence
3T. Diffusion‐weighted imaging, DDE with flow compensated, and noncompensated measurements.
Assessments
1) To compare, after irradiation, DDE‐derived parameters (intracellular fraction, cell size, and cell density) to their histological counterparts (fraction of stained area, minimal Feret diameter, and nuclei count, respectively). 2) To compare percentage changes in DDE‐derived parameters and ADC. 3) To evaluate the evolution of DDE‐derived parameters describing perfusion.
Statistical Tests
Wilcoxon rank sum test.
Results
1) Intracellular fraction, cell size, and cell density were respectively lower (−24%, P |
doi_str_mv | 10.1002/jmri.27119 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2432767064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2432767064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3579-f10c382877b0bd1c6f12d677e527ebe089a13d09662af4bf7bbc18072fd6c4393</originalsourceid><addsrcrecordid>eNp9kUtuFDEQhi0EIiGw4QDIEjukDrb74W52o04ggzIChSCWLT9nPOq2Gz-EZscROBQn4SS4MwGxYlNVKn_1l1U_AM8xOscIkdf7yZtzQjHuHoBTXBNSkLptHuYa1WWBW0RPwJMQ9gihrqvqx-CkJLiiHelOwc8Ll_io4IXROgXjLLy0wkljt1A7Dz96x5f6hknDYn7-9f3H2soklIQbI7wL0ScRk2cj7HfMblWAxkIGb9OUxzdOqvENXC06TufZu9A7K9Qc4aeY5AF-MXEHezfNzJuQ90cH407B1ZwbysZ_ftY7pbURZukyK-GVCdGNbnt4Ch5pNgb17D6fgc9vL2_7q-L6w7t1v7ouRFnTrtAYibIlLaUccYlFozGRDaWqJlRxhdqO4VKirmkI0xXXlHOxXI9o2Yiq7Moz8PKoO3v3NakQh71L3uaVA6lKQhuKmipTr47Ucp7glR5mbybmDwNGw2LYsBg23BmW4Rf3kolPSv5F_ziUAXwEvplRHf4jNbzf3KyPor8Bgwqm8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2432767064</pqid></control><display><type>article</type><title>Double Diffusion Encoding for Probing Radiation‐Induced Microstructural Changes in a Tumor Model: A Proof‐of‐Concept Study With Comparison to the Apparent Diffusion Coefficient and Histology</title><source>Wiley</source><creator>Duchêne, Gaëtan ; Abarca‐Quinones, Jorge ; Feza‐Bingi, Natacha ; Leclercq, Isabelle ; Duprez, Thierry ; Peeters, Frank</creator><creatorcontrib>Duchêne, Gaëtan ; Abarca‐Quinones, Jorge ; Feza‐Bingi, Natacha ; Leclercq, Isabelle ; Duprez, Thierry ; Peeters, Frank</creatorcontrib><description><![CDATA[Background
Microstructure analyses are gaining interest in cancer MRI as an alternative to the conventional apparent diffusion coefficient (ADC), of which the determinants remain unclear.
Purpose
To assess the sensitivity of parameters calculated from a double diffusion encoding (DDE) sequence to changes in a tumor's microstructure early after radiotherapy and to compare them with ADC and histology.
Study Type
Cohort study on experimental tumors.
Animal Model
Sixteen WAG/Rij rats grafted with one rhabdomyosarcoma fragment in each thigh. Thirty‐one were imaged at days 1 and 4, of which 17 tumors received a 20 Gy radiation dose after the first imagery.
Field Strength/Sequence
3T. Diffusion‐weighted imaging, DDE with flow compensated, and noncompensated measurements.
Assessments
1) To compare, after irradiation, DDE‐derived parameters (intracellular fraction, cell size, and cell density) to their histological counterparts (fraction of stained area, minimal Feret diameter, and nuclei count, respectively). 2) To compare percentage changes in DDE‐derived parameters and ADC. 3) To evaluate the evolution of DDE‐derived parameters describing perfusion.
Statistical Tests
Wilcoxon rank sum test.
Results
1) Intracellular fraction, cell size, and cell density were respectively lower (−24%, P < 0.001), higher (+7.5%, P < 0.001) and lower (−38%, P < 0.001) in treated tumors as compared to controls. Fraction of stained area, minimal Feret diameter, and nuclei count were respectively lower (−20%, P < 0.001), higher (+28%, P < 0.001), and lower (−34%, P < 0.001) in treated tumors. 2) The magnitude of ADC's percentage change due to irradiation (16.4%) was superior to the one of cell size (8.4%, P < 0.01) but inferior to those of intracellular fraction (35.5%, P < 0.001) and cell density (42%, P < 0.001). 3) After treatment, the magnitude of the vascular fraction's decrease was higher than the increase of flow velocity (33.3%, vs. 13.3%, P < 0.001).
Data Conclusion
The DDE sequence allows quantitatively monitoring the effects of radiotherapy on a tumor's microstructure, whereas ADC only reveals global changes.
Evidence Level
2.
Technical Efficacy
Stage 4. J. Magn. Reson. Imaging 2020;52:941–951.]]></description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.27119</identifier><identifier>PMID: 32147929</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Animal models ; Animals ; Cell density ; Cell size ; Cohort Studies ; DDE ; Density ; Diameters ; Diffusion ; Diffusion coefficient ; Diffusion Magnetic Resonance Imaging ; diffusion MRI ; Field strength ; Flow velocity ; Histology ; Image Interpretation, Computer-Assisted ; Intracellular ; Irradiation ; Magnetic Resonance Imaging ; Mathematical models ; Medical imaging ; Microstructure ; Neoplasms ; Nitrous oxide ; Nuclei ; Parameter sensitivity ; Perfusion ; Radiation ; Radiation dosage ; Radiation therapy ; radiotherapy ; Rats ; Rhabdomyosarcoma ; Statistical analysis ; Statistical tests ; Thigh ; Tumors</subject><ispartof>Journal of magnetic resonance imaging, 2020-09, Vol.52 (3), p.941-951</ispartof><rights>2020 International Society for Magnetic Resonance in Medicine</rights><rights>2020 International Society for Magnetic Resonance in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3579-f10c382877b0bd1c6f12d677e527ebe089a13d09662af4bf7bbc18072fd6c4393</citedby><cites>FETCH-LOGICAL-c3579-f10c382877b0bd1c6f12d677e527ebe089a13d09662af4bf7bbc18072fd6c4393</cites><orcidid>0000-0001-9285-8319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32147929$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Duchêne, Gaëtan</creatorcontrib><creatorcontrib>Abarca‐Quinones, Jorge</creatorcontrib><creatorcontrib>Feza‐Bingi, Natacha</creatorcontrib><creatorcontrib>Leclercq, Isabelle</creatorcontrib><creatorcontrib>Duprez, Thierry</creatorcontrib><creatorcontrib>Peeters, Frank</creatorcontrib><title>Double Diffusion Encoding for Probing Radiation‐Induced Microstructural Changes in a Tumor Model: A Proof‐of‐Concept Study With Comparison to the Apparent Diffusion Coefficient and Histology</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description><![CDATA[Background
Microstructure analyses are gaining interest in cancer MRI as an alternative to the conventional apparent diffusion coefficient (ADC), of which the determinants remain unclear.
Purpose
To assess the sensitivity of parameters calculated from a double diffusion encoding (DDE) sequence to changes in a tumor's microstructure early after radiotherapy and to compare them with ADC and histology.
Study Type
Cohort study on experimental tumors.
Animal Model
Sixteen WAG/Rij rats grafted with one rhabdomyosarcoma fragment in each thigh. Thirty‐one were imaged at days 1 and 4, of which 17 tumors received a 20 Gy radiation dose after the first imagery.
Field Strength/Sequence
3T. Diffusion‐weighted imaging, DDE with flow compensated, and noncompensated measurements.
Assessments
1) To compare, after irradiation, DDE‐derived parameters (intracellular fraction, cell size, and cell density) to their histological counterparts (fraction of stained area, minimal Feret diameter, and nuclei count, respectively). 2) To compare percentage changes in DDE‐derived parameters and ADC. 3) To evaluate the evolution of DDE‐derived parameters describing perfusion.
Statistical Tests
Wilcoxon rank sum test.
Results
1) Intracellular fraction, cell size, and cell density were respectively lower (−24%, P < 0.001), higher (+7.5%, P < 0.001) and lower (−38%, P < 0.001) in treated tumors as compared to controls. Fraction of stained area, minimal Feret diameter, and nuclei count were respectively lower (−20%, P < 0.001), higher (+28%, P < 0.001), and lower (−34%, P < 0.001) in treated tumors. 2) The magnitude of ADC's percentage change due to irradiation (16.4%) was superior to the one of cell size (8.4%, P < 0.01) but inferior to those of intracellular fraction (35.5%, P < 0.001) and cell density (42%, P < 0.001). 3) After treatment, the magnitude of the vascular fraction's decrease was higher than the increase of flow velocity (33.3%, vs. 13.3%, P < 0.001).
Data Conclusion
The DDE sequence allows quantitatively monitoring the effects of radiotherapy on a tumor's microstructure, whereas ADC only reveals global changes.
Evidence Level
2.
Technical Efficacy
Stage 4. J. Magn. Reson. Imaging 2020;52:941–951.]]></description><subject>Animal models</subject><subject>Animals</subject><subject>Cell density</subject><subject>Cell size</subject><subject>Cohort Studies</subject><subject>DDE</subject><subject>Density</subject><subject>Diameters</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Diffusion Magnetic Resonance Imaging</subject><subject>diffusion MRI</subject><subject>Field strength</subject><subject>Flow velocity</subject><subject>Histology</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Intracellular</subject><subject>Irradiation</subject><subject>Magnetic Resonance Imaging</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>Microstructure</subject><subject>Neoplasms</subject><subject>Nitrous oxide</subject><subject>Nuclei</subject><subject>Parameter sensitivity</subject><subject>Perfusion</subject><subject>Radiation</subject><subject>Radiation dosage</subject><subject>Radiation therapy</subject><subject>radiotherapy</subject><subject>Rats</subject><subject>Rhabdomyosarcoma</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Thigh</subject><subject>Tumors</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kUtuFDEQhi0EIiGw4QDIEjukDrb74W52o04ggzIChSCWLT9nPOq2Gz-EZscROBQn4SS4MwGxYlNVKn_1l1U_AM8xOscIkdf7yZtzQjHuHoBTXBNSkLptHuYa1WWBW0RPwJMQ9gihrqvqx-CkJLiiHelOwc8Ll_io4IXROgXjLLy0wkljt1A7Dz96x5f6hknDYn7-9f3H2soklIQbI7wL0ScRk2cj7HfMblWAxkIGb9OUxzdOqvENXC06TufZu9A7K9Qc4aeY5AF-MXEHezfNzJuQ90cH407B1ZwbysZ_ftY7pbURZukyK-GVCdGNbnt4Ch5pNgb17D6fgc9vL2_7q-L6w7t1v7ouRFnTrtAYibIlLaUccYlFozGRDaWqJlRxhdqO4VKirmkI0xXXlHOxXI9o2Yiq7Moz8PKoO3v3NakQh71L3uaVA6lKQhuKmipTr47Ucp7glR5mbybmDwNGw2LYsBg23BmW4Rf3kolPSv5F_ziUAXwEvplRHf4jNbzf3KyPor8Bgwqm8w</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Duchêne, Gaëtan</creator><creator>Abarca‐Quinones, Jorge</creator><creator>Feza‐Bingi, Natacha</creator><creator>Leclercq, Isabelle</creator><creator>Duprez, Thierry</creator><creator>Peeters, Frank</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-9285-8319</orcidid></search><sort><creationdate>202009</creationdate><title>Double Diffusion Encoding for Probing Radiation‐Induced Microstructural Changes in a Tumor Model: A Proof‐of‐Concept Study With Comparison to the Apparent Diffusion Coefficient and Histology</title><author>Duchêne, Gaëtan ; Abarca‐Quinones, Jorge ; Feza‐Bingi, Natacha ; Leclercq, Isabelle ; Duprez, Thierry ; Peeters, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3579-f10c382877b0bd1c6f12d677e527ebe089a13d09662af4bf7bbc18072fd6c4393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Cell density</topic><topic>Cell size</topic><topic>Cohort Studies</topic><topic>DDE</topic><topic>Density</topic><topic>Diameters</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Diffusion Magnetic Resonance Imaging</topic><topic>diffusion MRI</topic><topic>Field strength</topic><topic>Flow velocity</topic><topic>Histology</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Intracellular</topic><topic>Irradiation</topic><topic>Magnetic Resonance Imaging</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>Microstructure</topic><topic>Neoplasms</topic><topic>Nitrous oxide</topic><topic>Nuclei</topic><topic>Parameter sensitivity</topic><topic>Perfusion</topic><topic>Radiation</topic><topic>Radiation dosage</topic><topic>Radiation therapy</topic><topic>radiotherapy</topic><topic>Rats</topic><topic>Rhabdomyosarcoma</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Thigh</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duchêne, Gaëtan</creatorcontrib><creatorcontrib>Abarca‐Quinones, Jorge</creatorcontrib><creatorcontrib>Feza‐Bingi, Natacha</creatorcontrib><creatorcontrib>Leclercq, Isabelle</creatorcontrib><creatorcontrib>Duprez, Thierry</creatorcontrib><creatorcontrib>Peeters, Frank</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duchêne, Gaëtan</au><au>Abarca‐Quinones, Jorge</au><au>Feza‐Bingi, Natacha</au><au>Leclercq, Isabelle</au><au>Duprez, Thierry</au><au>Peeters, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Double Diffusion Encoding for Probing Radiation‐Induced Microstructural Changes in a Tumor Model: A Proof‐of‐Concept Study With Comparison to the Apparent Diffusion Coefficient and Histology</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2020-09</date><risdate>2020</risdate><volume>52</volume><issue>3</issue><spage>941</spage><epage>951</epage><pages>941-951</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract><![CDATA[Background
Microstructure analyses are gaining interest in cancer MRI as an alternative to the conventional apparent diffusion coefficient (ADC), of which the determinants remain unclear.
Purpose
To assess the sensitivity of parameters calculated from a double diffusion encoding (DDE) sequence to changes in a tumor's microstructure early after radiotherapy and to compare them with ADC and histology.
Study Type
Cohort study on experimental tumors.
Animal Model
Sixteen WAG/Rij rats grafted with one rhabdomyosarcoma fragment in each thigh. Thirty‐one were imaged at days 1 and 4, of which 17 tumors received a 20 Gy radiation dose after the first imagery.
Field Strength/Sequence
3T. Diffusion‐weighted imaging, DDE with flow compensated, and noncompensated measurements.
Assessments
1) To compare, after irradiation, DDE‐derived parameters (intracellular fraction, cell size, and cell density) to their histological counterparts (fraction of stained area, minimal Feret diameter, and nuclei count, respectively). 2) To compare percentage changes in DDE‐derived parameters and ADC. 3) To evaluate the evolution of DDE‐derived parameters describing perfusion.
Statistical Tests
Wilcoxon rank sum test.
Results
1) Intracellular fraction, cell size, and cell density were respectively lower (−24%, P < 0.001), higher (+7.5%, P < 0.001) and lower (−38%, P < 0.001) in treated tumors as compared to controls. Fraction of stained area, minimal Feret diameter, and nuclei count were respectively lower (−20%, P < 0.001), higher (+28%, P < 0.001), and lower (−34%, P < 0.001) in treated tumors. 2) The magnitude of ADC's percentage change due to irradiation (16.4%) was superior to the one of cell size (8.4%, P < 0.01) but inferior to those of intracellular fraction (35.5%, P < 0.001) and cell density (42%, P < 0.001). 3) After treatment, the magnitude of the vascular fraction's decrease was higher than the increase of flow velocity (33.3%, vs. 13.3%, P < 0.001).
Data Conclusion
The DDE sequence allows quantitatively monitoring the effects of radiotherapy on a tumor's microstructure, whereas ADC only reveals global changes.
Evidence Level
2.
Technical Efficacy
Stage 4. J. Magn. Reson. Imaging 2020;52:941–951.]]></abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>32147929</pmid><doi>10.1002/jmri.27119</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9285-8319</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-1807 |
ispartof | Journal of magnetic resonance imaging, 2020-09, Vol.52 (3), p.941-951 |
issn | 1053-1807 1522-2586 |
language | eng |
recordid | cdi_proquest_journals_2432767064 |
source | Wiley |
subjects | Animal models Animals Cell density Cell size Cohort Studies DDE Density Diameters Diffusion Diffusion coefficient Diffusion Magnetic Resonance Imaging diffusion MRI Field strength Flow velocity Histology Image Interpretation, Computer-Assisted Intracellular Irradiation Magnetic Resonance Imaging Mathematical models Medical imaging Microstructure Neoplasms Nitrous oxide Nuclei Parameter sensitivity Perfusion Radiation Radiation dosage Radiation therapy radiotherapy Rats Rhabdomyosarcoma Statistical analysis Statistical tests Thigh Tumors |
title | Double Diffusion Encoding for Probing Radiation‐Induced Microstructural Changes in a Tumor Model: A Proof‐of‐Concept Study With Comparison to the Apparent Diffusion Coefficient and Histology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A40%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Double%20Diffusion%20Encoding%20for%20Probing%20Radiation%E2%80%90Induced%20Microstructural%20Changes%20in%20a%20Tumor%20Model:%20A%20Proof%E2%80%90of%E2%80%90Concept%20Study%20With%20Comparison%20to%20the%20Apparent%20Diffusion%20Coefficient%20and%20Histology&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Duch%C3%AAne,%20Ga%C3%ABtan&rft.date=2020-09&rft.volume=52&rft.issue=3&rft.spage=941&rft.epage=951&rft.pages=941-951&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.27119&rft_dat=%3Cproquest_cross%3E2432767064%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3579-f10c382877b0bd1c6f12d677e527ebe089a13d09662af4bf7bbc18072fd6c4393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2432767064&rft_id=info:pmid/32147929&rfr_iscdi=true |