Loading…

Double Diffusion Encoding for Probing Radiation‐Induced Microstructural Changes in a Tumor Model: A Proof‐of‐Concept Study With Comparison to the Apparent Diffusion Coefficient and Histology

Background Microstructure analyses are gaining interest in cancer MRI as an alternative to the conventional apparent diffusion coefficient (ADC), of which the determinants remain unclear. Purpose To assess the sensitivity of parameters calculated from a double diffusion encoding (DDE) sequence to ch...

Full description

Saved in:
Bibliographic Details
Published in:Journal of magnetic resonance imaging 2020-09, Vol.52 (3), p.941-951
Main Authors: Duchêne, Gaëtan, Abarca‐Quinones, Jorge, Feza‐Bingi, Natacha, Leclercq, Isabelle, Duprez, Thierry, Peeters, Frank
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3579-f10c382877b0bd1c6f12d677e527ebe089a13d09662af4bf7bbc18072fd6c4393
cites cdi_FETCH-LOGICAL-c3579-f10c382877b0bd1c6f12d677e527ebe089a13d09662af4bf7bbc18072fd6c4393
container_end_page 951
container_issue 3
container_start_page 941
container_title Journal of magnetic resonance imaging
container_volume 52
creator Duchêne, Gaëtan
Abarca‐Quinones, Jorge
Feza‐Bingi, Natacha
Leclercq, Isabelle
Duprez, Thierry
Peeters, Frank
description Background Microstructure analyses are gaining interest in cancer MRI as an alternative to the conventional apparent diffusion coefficient (ADC), of which the determinants remain unclear. Purpose To assess the sensitivity of parameters calculated from a double diffusion encoding (DDE) sequence to changes in a tumor's microstructure early after radiotherapy and to compare them with ADC and histology. Study Type Cohort study on experimental tumors. Animal Model Sixteen WAG/Rij rats grafted with one rhabdomyosarcoma fragment in each thigh. Thirty‐one were imaged at days 1 and 4, of which 17 tumors received a 20 Gy radiation dose after the first imagery. Field Strength/Sequence 3T. Diffusion‐weighted imaging, DDE with flow compensated, and noncompensated measurements. Assessments 1) To compare, after irradiation, DDE‐derived parameters (intracellular fraction, cell size, and cell density) to their histological counterparts (fraction of stained area, minimal Feret diameter, and nuclei count, respectively). 2) To compare percentage changes in DDE‐derived parameters and ADC. 3) To evaluate the evolution of DDE‐derived parameters describing perfusion. Statistical Tests Wilcoxon rank sum test. Results 1) Intracellular fraction, cell size, and cell density were respectively lower (−24%, P 
doi_str_mv 10.1002/jmri.27119
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2432767064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2432767064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3579-f10c382877b0bd1c6f12d677e527ebe089a13d09662af4bf7bbc18072fd6c4393</originalsourceid><addsrcrecordid>eNp9kUtuFDEQhi0EIiGw4QDIEjukDrb74W52o04ggzIChSCWLT9nPOq2Gz-EZscROBQn4SS4MwGxYlNVKn_1l1U_AM8xOscIkdf7yZtzQjHuHoBTXBNSkLptHuYa1WWBW0RPwJMQ9gihrqvqx-CkJLiiHelOwc8Ll_io4IXROgXjLLy0wkljt1A7Dz96x5f6hknDYn7-9f3H2soklIQbI7wL0ScRk2cj7HfMblWAxkIGb9OUxzdOqvENXC06TufZu9A7K9Qc4aeY5AF-MXEHezfNzJuQ90cH407B1ZwbysZ_ftY7pbURZukyK-GVCdGNbnt4Ch5pNgb17D6fgc9vL2_7q-L6w7t1v7ouRFnTrtAYibIlLaUccYlFozGRDaWqJlRxhdqO4VKirmkI0xXXlHOxXI9o2Yiq7Moz8PKoO3v3NakQh71L3uaVA6lKQhuKmipTr47Ucp7glR5mbybmDwNGw2LYsBg23BmW4Rf3kolPSv5F_ziUAXwEvplRHf4jNbzf3KyPor8Bgwqm8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2432767064</pqid></control><display><type>article</type><title>Double Diffusion Encoding for Probing Radiation‐Induced Microstructural Changes in a Tumor Model: A Proof‐of‐Concept Study With Comparison to the Apparent Diffusion Coefficient and Histology</title><source>Wiley</source><creator>Duchêne, Gaëtan ; Abarca‐Quinones, Jorge ; Feza‐Bingi, Natacha ; Leclercq, Isabelle ; Duprez, Thierry ; Peeters, Frank</creator><creatorcontrib>Duchêne, Gaëtan ; Abarca‐Quinones, Jorge ; Feza‐Bingi, Natacha ; Leclercq, Isabelle ; Duprez, Thierry ; Peeters, Frank</creatorcontrib><description><![CDATA[Background Microstructure analyses are gaining interest in cancer MRI as an alternative to the conventional apparent diffusion coefficient (ADC), of which the determinants remain unclear. Purpose To assess the sensitivity of parameters calculated from a double diffusion encoding (DDE) sequence to changes in a tumor's microstructure early after radiotherapy and to compare them with ADC and histology. Study Type Cohort study on experimental tumors. Animal Model Sixteen WAG/Rij rats grafted with one rhabdomyosarcoma fragment in each thigh. Thirty‐one were imaged at days 1 and 4, of which 17 tumors received a 20 Gy radiation dose after the first imagery. Field Strength/Sequence 3T. Diffusion‐weighted imaging, DDE with flow compensated, and noncompensated measurements. Assessments 1) To compare, after irradiation, DDE‐derived parameters (intracellular fraction, cell size, and cell density) to their histological counterparts (fraction of stained area, minimal Feret diameter, and nuclei count, respectively). 2) To compare percentage changes in DDE‐derived parameters and ADC. 3) To evaluate the evolution of DDE‐derived parameters describing perfusion. Statistical Tests Wilcoxon rank sum test. Results 1) Intracellular fraction, cell size, and cell density were respectively lower (−24%, P < 0.001), higher (+7.5%, P < 0.001) and lower (−38%, P < 0.001) in treated tumors as compared to controls. Fraction of stained area, minimal Feret diameter, and nuclei count were respectively lower (−20%, P < 0.001), higher (+28%, P < 0.001), and lower (−34%, P < 0.001) in treated tumors. 2) The magnitude of ADC's percentage change due to irradiation (16.4%) was superior to the one of cell size (8.4%, P < 0.01) but inferior to those of intracellular fraction (35.5%, P < 0.001) and cell density (42%, P < 0.001). 3) After treatment, the magnitude of the vascular fraction's decrease was higher than the increase of flow velocity (33.3%, vs. 13.3%, P < 0.001). Data Conclusion The DDE sequence allows quantitatively monitoring the effects of radiotherapy on a tumor's microstructure, whereas ADC only reveals global changes. Evidence Level 2. Technical Efficacy Stage 4. J. Magn. Reson. Imaging 2020;52:941–951.]]></description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.27119</identifier><identifier>PMID: 32147929</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Animal models ; Animals ; Cell density ; Cell size ; Cohort Studies ; DDE ; Density ; Diameters ; Diffusion ; Diffusion coefficient ; Diffusion Magnetic Resonance Imaging ; diffusion MRI ; Field strength ; Flow velocity ; Histology ; Image Interpretation, Computer-Assisted ; Intracellular ; Irradiation ; Magnetic Resonance Imaging ; Mathematical models ; Medical imaging ; Microstructure ; Neoplasms ; Nitrous oxide ; Nuclei ; Parameter sensitivity ; Perfusion ; Radiation ; Radiation dosage ; Radiation therapy ; radiotherapy ; Rats ; Rhabdomyosarcoma ; Statistical analysis ; Statistical tests ; Thigh ; Tumors</subject><ispartof>Journal of magnetic resonance imaging, 2020-09, Vol.52 (3), p.941-951</ispartof><rights>2020 International Society for Magnetic Resonance in Medicine</rights><rights>2020 International Society for Magnetic Resonance in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3579-f10c382877b0bd1c6f12d677e527ebe089a13d09662af4bf7bbc18072fd6c4393</citedby><cites>FETCH-LOGICAL-c3579-f10c382877b0bd1c6f12d677e527ebe089a13d09662af4bf7bbc18072fd6c4393</cites><orcidid>0000-0001-9285-8319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32147929$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Duchêne, Gaëtan</creatorcontrib><creatorcontrib>Abarca‐Quinones, Jorge</creatorcontrib><creatorcontrib>Feza‐Bingi, Natacha</creatorcontrib><creatorcontrib>Leclercq, Isabelle</creatorcontrib><creatorcontrib>Duprez, Thierry</creatorcontrib><creatorcontrib>Peeters, Frank</creatorcontrib><title>Double Diffusion Encoding for Probing Radiation‐Induced Microstructural Changes in a Tumor Model: A Proof‐of‐Concept Study With Comparison to the Apparent Diffusion Coefficient and Histology</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description><![CDATA[Background Microstructure analyses are gaining interest in cancer MRI as an alternative to the conventional apparent diffusion coefficient (ADC), of which the determinants remain unclear. Purpose To assess the sensitivity of parameters calculated from a double diffusion encoding (DDE) sequence to changes in a tumor's microstructure early after radiotherapy and to compare them with ADC and histology. Study Type Cohort study on experimental tumors. Animal Model Sixteen WAG/Rij rats grafted with one rhabdomyosarcoma fragment in each thigh. Thirty‐one were imaged at days 1 and 4, of which 17 tumors received a 20 Gy radiation dose after the first imagery. Field Strength/Sequence 3T. Diffusion‐weighted imaging, DDE with flow compensated, and noncompensated measurements. Assessments 1) To compare, after irradiation, DDE‐derived parameters (intracellular fraction, cell size, and cell density) to their histological counterparts (fraction of stained area, minimal Feret diameter, and nuclei count, respectively). 2) To compare percentage changes in DDE‐derived parameters and ADC. 3) To evaluate the evolution of DDE‐derived parameters describing perfusion. Statistical Tests Wilcoxon rank sum test. Results 1) Intracellular fraction, cell size, and cell density were respectively lower (−24%, P < 0.001), higher (+7.5%, P < 0.001) and lower (−38%, P < 0.001) in treated tumors as compared to controls. Fraction of stained area, minimal Feret diameter, and nuclei count were respectively lower (−20%, P < 0.001), higher (+28%, P < 0.001), and lower (−34%, P < 0.001) in treated tumors. 2) The magnitude of ADC's percentage change due to irradiation (16.4%) was superior to the one of cell size (8.4%, P < 0.01) but inferior to those of intracellular fraction (35.5%, P < 0.001) and cell density (42%, P < 0.001). 3) After treatment, the magnitude of the vascular fraction's decrease was higher than the increase of flow velocity (33.3%, vs. 13.3%, P < 0.001). Data Conclusion The DDE sequence allows quantitatively monitoring the effects of radiotherapy on a tumor's microstructure, whereas ADC only reveals global changes. Evidence Level 2. Technical Efficacy Stage 4. J. Magn. Reson. Imaging 2020;52:941–951.]]></description><subject>Animal models</subject><subject>Animals</subject><subject>Cell density</subject><subject>Cell size</subject><subject>Cohort Studies</subject><subject>DDE</subject><subject>Density</subject><subject>Diameters</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Diffusion Magnetic Resonance Imaging</subject><subject>diffusion MRI</subject><subject>Field strength</subject><subject>Flow velocity</subject><subject>Histology</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Intracellular</subject><subject>Irradiation</subject><subject>Magnetic Resonance Imaging</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>Microstructure</subject><subject>Neoplasms</subject><subject>Nitrous oxide</subject><subject>Nuclei</subject><subject>Parameter sensitivity</subject><subject>Perfusion</subject><subject>Radiation</subject><subject>Radiation dosage</subject><subject>Radiation therapy</subject><subject>radiotherapy</subject><subject>Rats</subject><subject>Rhabdomyosarcoma</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Thigh</subject><subject>Tumors</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kUtuFDEQhi0EIiGw4QDIEjukDrb74W52o04ggzIChSCWLT9nPOq2Gz-EZscROBQn4SS4MwGxYlNVKn_1l1U_AM8xOscIkdf7yZtzQjHuHoBTXBNSkLptHuYa1WWBW0RPwJMQ9gihrqvqx-CkJLiiHelOwc8Ll_io4IXROgXjLLy0wkljt1A7Dz96x5f6hknDYn7-9f3H2soklIQbI7wL0ScRk2cj7HfMblWAxkIGb9OUxzdOqvENXC06TufZu9A7K9Qc4aeY5AF-MXEHezfNzJuQ90cH407B1ZwbysZ_ftY7pbURZukyK-GVCdGNbnt4Ch5pNgb17D6fgc9vL2_7q-L6w7t1v7ouRFnTrtAYibIlLaUccYlFozGRDaWqJlRxhdqO4VKirmkI0xXXlHOxXI9o2Yiq7Moz8PKoO3v3NakQh71L3uaVA6lKQhuKmipTr47Ucp7glR5mbybmDwNGw2LYsBg23BmW4Rf3kolPSv5F_ziUAXwEvplRHf4jNbzf3KyPor8Bgwqm8w</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Duchêne, Gaëtan</creator><creator>Abarca‐Quinones, Jorge</creator><creator>Feza‐Bingi, Natacha</creator><creator>Leclercq, Isabelle</creator><creator>Duprez, Thierry</creator><creator>Peeters, Frank</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-9285-8319</orcidid></search><sort><creationdate>202009</creationdate><title>Double Diffusion Encoding for Probing Radiation‐Induced Microstructural Changes in a Tumor Model: A Proof‐of‐Concept Study With Comparison to the Apparent Diffusion Coefficient and Histology</title><author>Duchêne, Gaëtan ; Abarca‐Quinones, Jorge ; Feza‐Bingi, Natacha ; Leclercq, Isabelle ; Duprez, Thierry ; Peeters, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3579-f10c382877b0bd1c6f12d677e527ebe089a13d09662af4bf7bbc18072fd6c4393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Cell density</topic><topic>Cell size</topic><topic>Cohort Studies</topic><topic>DDE</topic><topic>Density</topic><topic>Diameters</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Diffusion Magnetic Resonance Imaging</topic><topic>diffusion MRI</topic><topic>Field strength</topic><topic>Flow velocity</topic><topic>Histology</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Intracellular</topic><topic>Irradiation</topic><topic>Magnetic Resonance Imaging</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>Microstructure</topic><topic>Neoplasms</topic><topic>Nitrous oxide</topic><topic>Nuclei</topic><topic>Parameter sensitivity</topic><topic>Perfusion</topic><topic>Radiation</topic><topic>Radiation dosage</topic><topic>Radiation therapy</topic><topic>radiotherapy</topic><topic>Rats</topic><topic>Rhabdomyosarcoma</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Thigh</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duchêne, Gaëtan</creatorcontrib><creatorcontrib>Abarca‐Quinones, Jorge</creatorcontrib><creatorcontrib>Feza‐Bingi, Natacha</creatorcontrib><creatorcontrib>Leclercq, Isabelle</creatorcontrib><creatorcontrib>Duprez, Thierry</creatorcontrib><creatorcontrib>Peeters, Frank</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duchêne, Gaëtan</au><au>Abarca‐Quinones, Jorge</au><au>Feza‐Bingi, Natacha</au><au>Leclercq, Isabelle</au><au>Duprez, Thierry</au><au>Peeters, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Double Diffusion Encoding for Probing Radiation‐Induced Microstructural Changes in a Tumor Model: A Proof‐of‐Concept Study With Comparison to the Apparent Diffusion Coefficient and Histology</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2020-09</date><risdate>2020</risdate><volume>52</volume><issue>3</issue><spage>941</spage><epage>951</epage><pages>941-951</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract><![CDATA[Background Microstructure analyses are gaining interest in cancer MRI as an alternative to the conventional apparent diffusion coefficient (ADC), of which the determinants remain unclear. Purpose To assess the sensitivity of parameters calculated from a double diffusion encoding (DDE) sequence to changes in a tumor's microstructure early after radiotherapy and to compare them with ADC and histology. Study Type Cohort study on experimental tumors. Animal Model Sixteen WAG/Rij rats grafted with one rhabdomyosarcoma fragment in each thigh. Thirty‐one were imaged at days 1 and 4, of which 17 tumors received a 20 Gy radiation dose after the first imagery. Field Strength/Sequence 3T. Diffusion‐weighted imaging, DDE with flow compensated, and noncompensated measurements. Assessments 1) To compare, after irradiation, DDE‐derived parameters (intracellular fraction, cell size, and cell density) to their histological counterparts (fraction of stained area, minimal Feret diameter, and nuclei count, respectively). 2) To compare percentage changes in DDE‐derived parameters and ADC. 3) To evaluate the evolution of DDE‐derived parameters describing perfusion. Statistical Tests Wilcoxon rank sum test. Results 1) Intracellular fraction, cell size, and cell density were respectively lower (−24%, P < 0.001), higher (+7.5%, P < 0.001) and lower (−38%, P < 0.001) in treated tumors as compared to controls. Fraction of stained area, minimal Feret diameter, and nuclei count were respectively lower (−20%, P < 0.001), higher (+28%, P < 0.001), and lower (−34%, P < 0.001) in treated tumors. 2) The magnitude of ADC's percentage change due to irradiation (16.4%) was superior to the one of cell size (8.4%, P < 0.01) but inferior to those of intracellular fraction (35.5%, P < 0.001) and cell density (42%, P < 0.001). 3) After treatment, the magnitude of the vascular fraction's decrease was higher than the increase of flow velocity (33.3%, vs. 13.3%, P < 0.001). Data Conclusion The DDE sequence allows quantitatively monitoring the effects of radiotherapy on a tumor's microstructure, whereas ADC only reveals global changes. Evidence Level 2. Technical Efficacy Stage 4. J. Magn. Reson. Imaging 2020;52:941–951.]]></abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>32147929</pmid><doi>10.1002/jmri.27119</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9285-8319</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2020-09, Vol.52 (3), p.941-951
issn 1053-1807
1522-2586
language eng
recordid cdi_proquest_journals_2432767064
source Wiley
subjects Animal models
Animals
Cell density
Cell size
Cohort Studies
DDE
Density
Diameters
Diffusion
Diffusion coefficient
Diffusion Magnetic Resonance Imaging
diffusion MRI
Field strength
Flow velocity
Histology
Image Interpretation, Computer-Assisted
Intracellular
Irradiation
Magnetic Resonance Imaging
Mathematical models
Medical imaging
Microstructure
Neoplasms
Nitrous oxide
Nuclei
Parameter sensitivity
Perfusion
Radiation
Radiation dosage
Radiation therapy
radiotherapy
Rats
Rhabdomyosarcoma
Statistical analysis
Statistical tests
Thigh
Tumors
title Double Diffusion Encoding for Probing Radiation‐Induced Microstructural Changes in a Tumor Model: A Proof‐of‐Concept Study With Comparison to the Apparent Diffusion Coefficient and Histology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A40%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Double%20Diffusion%20Encoding%20for%20Probing%20Radiation%E2%80%90Induced%20Microstructural%20Changes%20in%20a%20Tumor%20Model:%20A%20Proof%E2%80%90of%E2%80%90Concept%20Study%20With%20Comparison%20to%20the%20Apparent%20Diffusion%20Coefficient%20and%20Histology&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Duch%C3%AAne,%20Ga%C3%ABtan&rft.date=2020-09&rft.volume=52&rft.issue=3&rft.spage=941&rft.epage=951&rft.pages=941-951&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.27119&rft_dat=%3Cproquest_cross%3E2432767064%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3579-f10c382877b0bd1c6f12d677e527ebe089a13d09662af4bf7bbc18072fd6c4393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2432767064&rft_id=info:pmid/32147929&rfr_iscdi=true