Loading…
Sodium Para-aminosalicylic Acid Reverses Changes of Glutamate Turnover in Manganese-Exposed Rats
Sodium para-aminosalicylic acid (PAS-Na) has been used to treat patients with manganism, a neurological disease caused by manganese (Mn) toxicity, although the exact molecular mechanisms are yet unclear. The present study aims to investigate the effect of PAS-Na on glutamate (Glu) turnover of Mn-exp...
Saved in:
Published in: | Biological trace element research 2020-10, Vol.197 (2), p.544-554 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Sodium para-aminosalicylic acid (PAS-Na) has been used to treat patients with manganism, a neurological disease caused by manganese (Mn) toxicity, although the exact molecular mechanisms are yet unclear. The present study aims to investigate the effect of PAS-Na on glutamate (Glu) turnover of Mn-exposed rats. The results showed that Mn concentrations in the hippocampus, thalamus, striatum, and globus pallidus were increased in Mn-exposed rats. Moreover, the results also demonstrated that subacute Mn exposure (15 mg/kg for 4 weeks) interrupted the homeostasis of Glu by increasing Glu levels but decreasing glutamine (Gln) levels in the hippocampus, thalamus, striatum, and globus pallidus in male Sprague-Dawley rats. These effects lasted even after Mn exposure had been ceased for a period of 6 weeks. Meanwhile the main Glu turnover enzymes [Gln synthetase (GS) and phosphate-activated glutaminase (PAG)] and transporters [Glu/aspartate transporter (GLAST) and Glu transporter-1 (GLT-1)] were also affected by Mn treatment. Additionally, PAS-Na treatment recovered the aforementioned changes induced by Mn. Taken together, these results indicate that Glu turnover might be involved in Mn-induced neurotoxicity. PAS-Na treatment could promote Mn excretions and recover the changes in Glu turnover induced by Mn, and a prolonged PAS-Na treatment may be more effective. |
---|---|
ISSN: | 0163-4984 1559-0720 |
DOI: | 10.1007/s12011-019-02001-0 |