Loading…
VI-Net: View-Invariant Quality of Human Movement Assessment
We propose a view-invariant method towards the assessment of the quality of human movements which does not rely on skeleton data. Our end-to-end convolutional neural network consists of two stages, where at first a view-invariant trajectory descriptor for each body joint is generated from RGB images...
Saved in:
Published in: | arXiv.org 2020-08 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Sardari, Faegheh Paiement, Adeline Sion Hannuna Mirmehdi, Majid |
description | We propose a view-invariant method towards the assessment of the quality of human movements which does not rely on skeleton data. Our end-to-end convolutional neural network consists of two stages, where at first a view-invariant trajectory descriptor for each body joint is generated from RGB images, and then the collection of trajectories for all joints are processed by an adapted, pre-trained 2D CNN (e.g. VGG-19 or ResNeXt-50) to learn the relationship amongst the different body parts and deliver a score for the movement quality. We release the only publicly-available, multi-view, non-skeleton, non-mocap, rehabilitation movement dataset (QMAR), and provide results for both cross-subject and cross-view scenarios on this dataset. We show that VI-Net achieves average rank correlation of 0.66 on cross-subject and 0.65 on unseen views when trained on only two views. We also evaluate the proposed method on the single-view rehabilitation dataset KIMORE and obtain 0.66 rank correlation against a baseline of 0.62. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2433601599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2433601599</sourcerecordid><originalsourceid>FETCH-proquest_journals_24336015993</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwDvPU9UstsVIIy0wt1_XMK0ssykzMK1EILE3MySypVMhPU_AozU3MU_DNL0vNTQXKOBYXpxYXg5g8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGJsbGZgaGppaUycKgCfYDad</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2433601599</pqid></control><display><type>article</type><title>VI-Net: View-Invariant Quality of Human Movement Assessment</title><source>Publicly Available Content (ProQuest)</source><creator>Sardari, Faegheh ; Paiement, Adeline ; Sion Hannuna ; Mirmehdi, Majid</creator><creatorcontrib>Sardari, Faegheh ; Paiement, Adeline ; Sion Hannuna ; Mirmehdi, Majid</creatorcontrib><description>We propose a view-invariant method towards the assessment of the quality of human movements which does not rely on skeleton data. Our end-to-end convolutional neural network consists of two stages, where at first a view-invariant trajectory descriptor for each body joint is generated from RGB images, and then the collection of trajectories for all joints are processed by an adapted, pre-trained 2D CNN (e.g. VGG-19 or ResNeXt-50) to learn the relationship amongst the different body parts and deliver a score for the movement quality. We release the only publicly-available, multi-view, non-skeleton, non-mocap, rehabilitation movement dataset (QMAR), and provide results for both cross-subject and cross-view scenarios on this dataset. We show that VI-Net achieves average rank correlation of 0.66 on cross-subject and 0.65 on unseen views when trained on only two views. We also evaluate the proposed method on the single-view rehabilitation dataset KIMORE and obtain 0.66 rank correlation against a baseline of 0.62.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Body parts ; Color imagery ; Datasets ; Human motion ; Invariants ; Quality assessment ; Rehabilitation</subject><ispartof>arXiv.org, 2020-08</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2433601599?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Sardari, Faegheh</creatorcontrib><creatorcontrib>Paiement, Adeline</creatorcontrib><creatorcontrib>Sion Hannuna</creatorcontrib><creatorcontrib>Mirmehdi, Majid</creatorcontrib><title>VI-Net: View-Invariant Quality of Human Movement Assessment</title><title>arXiv.org</title><description>We propose a view-invariant method towards the assessment of the quality of human movements which does not rely on skeleton data. Our end-to-end convolutional neural network consists of two stages, where at first a view-invariant trajectory descriptor for each body joint is generated from RGB images, and then the collection of trajectories for all joints are processed by an adapted, pre-trained 2D CNN (e.g. VGG-19 or ResNeXt-50) to learn the relationship amongst the different body parts and deliver a score for the movement quality. We release the only publicly-available, multi-view, non-skeleton, non-mocap, rehabilitation movement dataset (QMAR), and provide results for both cross-subject and cross-view scenarios on this dataset. We show that VI-Net achieves average rank correlation of 0.66 on cross-subject and 0.65 on unseen views when trained on only two views. We also evaluate the proposed method on the single-view rehabilitation dataset KIMORE and obtain 0.66 rank correlation against a baseline of 0.62.</description><subject>Artificial neural networks</subject><subject>Body parts</subject><subject>Color imagery</subject><subject>Datasets</subject><subject>Human motion</subject><subject>Invariants</subject><subject>Quality assessment</subject><subject>Rehabilitation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwDvPU9UstsVIIy0wt1_XMK0ssykzMK1EILE3MySypVMhPU_AozU3MU_DNL0vNTQXKOBYXpxYXg5g8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGJsbGZgaGppaUycKgCfYDad</recordid><startdate>20200811</startdate><enddate>20200811</enddate><creator>Sardari, Faegheh</creator><creator>Paiement, Adeline</creator><creator>Sion Hannuna</creator><creator>Mirmehdi, Majid</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200811</creationdate><title>VI-Net: View-Invariant Quality of Human Movement Assessment</title><author>Sardari, Faegheh ; Paiement, Adeline ; Sion Hannuna ; Mirmehdi, Majid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24336015993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Body parts</topic><topic>Color imagery</topic><topic>Datasets</topic><topic>Human motion</topic><topic>Invariants</topic><topic>Quality assessment</topic><topic>Rehabilitation</topic><toplevel>online_resources</toplevel><creatorcontrib>Sardari, Faegheh</creatorcontrib><creatorcontrib>Paiement, Adeline</creatorcontrib><creatorcontrib>Sion Hannuna</creatorcontrib><creatorcontrib>Mirmehdi, Majid</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sardari, Faegheh</au><au>Paiement, Adeline</au><au>Sion Hannuna</au><au>Mirmehdi, Majid</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>VI-Net: View-Invariant Quality of Human Movement Assessment</atitle><jtitle>arXiv.org</jtitle><date>2020-08-11</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We propose a view-invariant method towards the assessment of the quality of human movements which does not rely on skeleton data. Our end-to-end convolutional neural network consists of two stages, where at first a view-invariant trajectory descriptor for each body joint is generated from RGB images, and then the collection of trajectories for all joints are processed by an adapted, pre-trained 2D CNN (e.g. VGG-19 or ResNeXt-50) to learn the relationship amongst the different body parts and deliver a score for the movement quality. We release the only publicly-available, multi-view, non-skeleton, non-mocap, rehabilitation movement dataset (QMAR), and provide results for both cross-subject and cross-view scenarios on this dataset. We show that VI-Net achieves average rank correlation of 0.66 on cross-subject and 0.65 on unseen views when trained on only two views. We also evaluate the proposed method on the single-view rehabilitation dataset KIMORE and obtain 0.66 rank correlation against a baseline of 0.62.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2433601599 |
source | Publicly Available Content (ProQuest) |
subjects | Artificial neural networks Body parts Color imagery Datasets Human motion Invariants Quality assessment Rehabilitation |
title | VI-Net: View-Invariant Quality of Human Movement Assessment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A15%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=VI-Net:%20View-Invariant%20Quality%20of%20Human%20Movement%20Assessment&rft.jtitle=arXiv.org&rft.au=Sardari,%20Faegheh&rft.date=2020-08-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2433601599%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24336015993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2433601599&rft_id=info:pmid/&rfr_iscdi=true |